Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Highspeed Origami in der Zelle - Forscher klären wichtigen Mechanismus der Proteinfaltung

09.05.2014

Proteine sind für nahezu alle wichtigen Prozesse des Lebens verantwortlich. Dabei sind ihre Form und Struktur entscheidend für ihre Funktionstüchtigkeit.

Forscher am Max-Planck-Institut für Biochemie (MPIB) haben jetzt eine bisher unbekannte Abfolge von Reaktionen entdeckt, die neu gebildeten Proteinen ihre korrekte Struktur verleiht. „Bei dem von uns gefundenen Mechanismus erfolgt die Faltung der Proteine, anstatt als Ganzes, in mehreren, schnellen Zwischenschritten“, erläutert Manajit Hayer-Hartl, Forschungsgruppenleiterin am MPIB. „Da dieses Verfahren sehr energiesparend für die Zelle ist, werden Proteine nicht nur korrekt, sondern auch deutlich schneller als bisher angenommen gefaltet.“


Der GroEL/ES Nanokäfig (weiß und blau) mit eingeschlossenem Protein Substrat (orange).

Abbildung: Andreas Bracher / Copyright: MPI für Biochemie

Proteine sind die Arbeitstiere der Zelle und für nahezu alle biologischen Funktionen verantwortlich. Sie sind unter anderem für den Stoffwechsel zuständig, übertragen Signale oder geben der Zelle ihre Form. Bevor sie allerdings ihre verschiedenen Aufgaben erfüllen können, müssen die kettenartigen Moleküle zunächst eine komplexe dreidimensionale Form annehmen.

Dieser Vorgang nennt sich Proteinfaltung und ist einer der wichtigsten Prozesse in der Biologie. Denn falsch gefaltete Proteine können häufig ihre ursprüngliche Funktion nicht wahrnehmen oder gar dazu neigen, zu verklumpen. Dies wiederum kann zu schwerwiegenden Krankheiten wie Alzheimer oder Parkinson führen. Um dies zu vermeiden, helfen spezialisierte Proteine (Chaperone, engl.: Anstandsdamen) ihren Schwester-Molekülen dabei, sich in die richtige Form zu bringen.

Ein konkretes Beispiel stellen die beiden bakteriellen Chaperone GroEL und GroES dar. Zusammen bilden sie eine käfigartige Struktur, in der sie neue, noch nicht gefaltete Proteine einschließen und diesen ermöglichen, sich korrekt zu falten. Wie genau sie dies allerdings realisieren, war bisher unklar und Forschungsgegenstand des Teams um Manajit Hayer-Hartl und Ulrich Hartl am MPIB, sowie John Engen von der Northeastern University in Boston.

Aktive Beschleunigung durch bessere Energiebilanz

„Unsere Ergebnisse zeigen, dass die Chaperone nicht nur verhindern, dass die Proteine verklumpen, sondern auch, dass sie den Faltungsprozess dramatisch beschleunigen“, schildert Florian Georgescauld, Wissenschaftler am MPIB. „Überraschenderweise erreichen die Chaperone dies, indem sie den Faltmechanismus verändern: Anstatt das Protein in einem großen Block auf einmal zu falten, erlangt es – wie bei einem kunstvollen Origami – in mehreren sehr schnellen Faltungsschritten seine Form.“ Die Forscher nehmen an, dass die Aufteilung in mehrere kleine Schritte die Reaktion energetisch günstiger macht, was wiederum die Geschwindigkeit erhöhe. So wird die Faltung innerhalb weniger Sekunden abgeschlossen, anstatt binnen mehrerer Minuten.

Die Studie zeigt zum ersten Mal, dass Chaperone nicht nur passiv als Reaktionskäfig, sondern auch aktiv als so genannter Katalysator wirken können. Die daraus resultierende, hohe Faltungsge-schwindigkeit sei biologisch besonders relevant, so die Forscher. Sie trägt dazu bei, dass Proteine schneller gefaltet als nachproduziert werden und verhindert so den Rückstau fehlerhafter Proteine und die damit verbundenen Folgen.

Originalpublikation:
F. Georgescauld, K. Popova, A. J. Gupta, A. Bracher, J. R. Engen, M. Hayer-Hartl and F. U. Hartl: GroEL/ES Chaperonin Modulates the Mechanism and Accelerates the Rate of TIM-Barrel Domain Folding. Cell, May 8, 2014.
DOI: 10.1016/j.cell.2014.03.038

Kontakt:
Dr. Manajit Hayer-Hartl
Chaperonin-vermittelte Proteinfaltung
Max-Planck-Institut für Biochemie
Am Klopferspitz 18
82152 Martinsried
E-Mail: mhartl@biochem.mpg.de
http://www.biochem.mpg.de/hayer-hartl

Anja Konschak
Öffentlichkeitsarbeit
Max-Planck-Institut für Biochemie
Am Klopferspitz 18
82152 Martinsried
Tel. +49 89 8578-2824
E-Mail: konschak@biochem.mpg.de
http://www.biochem.mpg.de

Weitere Informationen:

http://www.biochem.mpg.de/hayer-hartl - Webseite der Forschungsgruppe „Chaperonin vermittelte Proteinfaltung“ (Manajit Hayer-Hartl)
http://www.biochem.mpg.de/news/ueber_das_institut/forschungsbereiche/strukturfor... - Presseseite der Forschungsgruppe „Chaperonin vermittelte Proteinfaltung“ (Manajit Hayer-Hartl)
http://www.mpg.de/7557013/proteinfaltung - Film „Grundlagen der Proteinfaltung“
http://www.mpg.de/7542949/chaperone - Film „Chaperone - Faltungshelfer der Zelle“

Anja Konschak | Max-Planck-Institut

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Aufräumen? Nicht ohne Helfer
19.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Einzelne Rezeptoren auf der Arbeit
19.10.2017 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Schmetterlingsflügel inspiriert Photovoltaik: Absorption lässt sich um bis zu 200 Prozent steigern

Sonnenlicht, das von Solarzellen reflektiert wird, geht als ungenutzte Energie verloren. Die Flügel des Schmetterlings „Gewöhnliche Rose“ (Pachliopta aristolochiae) zeichnen sich durch Nanostrukturen aus, kleinste Löcher, die Licht über ein breites Spektrum deutlich besser absorbieren als glatte Oberflächen. Forschern am Karlsruher Institut für Technologie (KIT) ist es nun gelungen, diese Nanostrukturen auf Solarzellen zu übertragen und deren Licht-Absorptionsrate so um bis zu 200 Prozent zu steigern. Ihre Ergebnisse veröffentlichten die Wissenschaftler nun im Fachmagazin Science Advances. DOI: 10.1126/sciadv.1700232

„Der von uns untersuchte Schmetterling hat eine augenscheinliche Besonderheit: Er ist extrem dunkelschwarz. Das liegt daran, dass er für eine optimale...

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Im Focus: Neue Möglichkeiten für die Immuntherapie beim Lungenkrebs entdeckt

Eine gemeinsame Studie der Universität Bern und des Inselspitals Bern zeigt, dass spezielle Bindegewebszellen, die in normalen Blutgefässen die Wände abdichten, bei Lungenkrebs nicht mehr richtig funktionieren. Zusätzlich unterdrücken sie die immunologische Bekämpfung des Tumors. Die Resultate legen nahe, dass diese Zellen ein neues Ziel für die Immuntherapie gegen Lungenkarzinome sein könnten.

Lungenkarzinome sind die häufigste Krebsform weltweit. Jährlich werden 1.8 Millionen Neudiagnosen gestellt; und 2016 starben 1.6 Millionen Menschen an der...

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Das Immunsystem in Extremsituationen

19.10.2017 | Veranstaltungen

Die jungen forschungsstarken Unis Europas tagen in Ulm - YERUN Tagung in Ulm

19.10.2017 | Veranstaltungen

Bauphysiktagung der TU Kaiserslautern befasst sich mit energieeffizienten Gebäuden

19.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Aufräumen? Nicht ohne Helfer

19.10.2017 | Biowissenschaften Chemie

Neue Biotinte für den Druck gewebeähnlicher Strukturen

19.10.2017 | Materialwissenschaften

Forscher studieren molekulare Konversion auf einer Zeitskala von wenigen Femtosekunden

19.10.2017 | Physik Astronomie