Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Herzreparatur im Embryo

15.10.2008
Erkrankt das Herz während seiner Entwicklung im Embryo, kann es sich soweit erholen, dass es zur Geburt voll funktionsfähig ist, vorausgesetzt ein Teil der Herzzellen bleibt gesund.

Wie Dr. Jörg-Detlef Drenckhahn vom Max-Delbrück-Centrum für Molekulare Medizin (MDC) Berlin-Buch mit Kollegen aus Australien herausgefunden hat, teilen sich bei Mäuseweibchen die gesunden Zellen des Herzens häufiger und verdrängen so das geschädigte Gewebe. "Unsere Ergebnisse können in Zukunft zu neuen Therapien führen", hofft er. "Mit den richtigen Signalen könnte beispielsweise ein durch einen Herzinfarkt geschädigtes Herz angeregt werden, sich selbst zu heilen." (Developmental Cell, Vol. 15)*.

Damit das Herz schlagen kann, benötigt es Energie. Ist die Energieproduktion in den Herzzellen gestört, müsste ein Embryo wegen der fehlerhaften Herzfunktion eigentlich sterben. Das ist jedoch nicht der Fall, wenn nur ein Teil der Zellen betroffen ist: Der Embryo schafft es mit Hilfe der verbleibenden gesunden Zellen, das Herz zu regenerieren.

Die Wissenschaftler schalteten im sich entwickelnden Herzen von Mäusen ein Gen (Holocytochrom-C-Synthase, kurz Hccs) aus, das für die Energieproduktion essentiell ist. Es zeigte sich, dass die Embryos starben, wenn alle Zellen im Herzen von der defekten Energieproduktion betroffen waren. Die Tiere hingegen, die noch einen Anteil gesunder Zellen im Herzen hatten, überlebten und hatten zum Zeitpunkt der Geburt ein voll funktionsfähiges Herz.

Das Gen Hccs sitzt auf einem der Geschlechtschromosomen, dem X-Chromosom. Im Gegensatz zu den männlichen Tieren haben Weibchen zwei X-Chromosomen. Einige der veränderten weiblichen Mäuse haben ein X-Chromosom mit dem defekten und eines mit dem intakten Hccs-Gen. In den Zellen der weiblichen Tiere ist jedoch nur ein X-Chromosom aktiv. Je nachdem welches abgelesen wird, entstehen gesunde oder kranke Herzzellen. "Zu diesem Zeitpunkt gleicht das Herz der Mäuse einem Mosaik", erklärt Dr. Drenckhahn. "Die Hälfte der Zellen ist gesund, die andere Hälfte nicht."

Bis zur Geburt schafft es der Embryo, das Verhältnis zwischen gesunden und defekten Zellen von ursprünglich 50:50 zu verbessern. Die defekten Zellen machen dann nur noch zehn Prozent des gesamten Herzvolumens aus. Das ist möglich, weil sich die gesunden Herzmuskelzellen sehr viel häufiger teilen als die defekten Zellen. Ihr Anteil im Herzen nimmt zu und ist zum Zeitpunkt der Geburt groß genug, um das Herz der neugeborenen Maus normal schlagen zu lassen. "Doch auch nach der Geburt ist das Herz eine zeitlang fähig, sich zu erholen", erläutert Dr. Drenckhahn.

Später verliert das Herz diese Fähigkeit. So starben nach rund einem Jahr ein Teil der Mäuse (13 Prozent) an Herzmuskelschwäche und nahezu die Hälfte entwickelte Herzrhythmusstörungen. Warum nur ein Teil der Mäuse Herzprobleme ausbildet, ist noch unklar. Die Wissenschaftler wollen deshalb das Gen auch in erwachsenen Mäusen ausschalten, um seinen Einfluss dort zu untersuchen.

Weiter wollen sie die embryonalen Signalstoffe identifizieren, die gesunde Zellen zur Teilung anregen und kranke Zellen hemmen. Diese Signalstoffe könnten in Zukunft auch im Menschen helfen, die körpereigenen Reparaturmechanismen des Herzen zum Beispiel nach einem Herzinfarkt oder bei Herzschwäche wieder anzuregen, hoffen die Wissenschaftler.

Für seine Arbeit über die Reparatur von embryonalen Herzen hatte Dr. Drenckhahn 2007 den Oskar-Lapp-Preis erhalten.

*Compensatory growth of healthy cardiac cells in the presence of diseased cells restores tissue homeostasis during heart development

Jörg-Detlef Drenckhahn1,2,3, Quenten P. Schwarz2,9, Stephen Gray1, Adrienne Laskowski4, Helen Kiriazis5, Ziqiu Ming5, Richard P. Harvey6, Xiao-Jun Du5, David R. Thorburn4,7 and Timothy C. Cox1,2,8

1Department of Anatomy & Developmental Biology, Monash University, Wellington Road, Clayton VIC 3800, Melbourne, Australia
2School of Biomedical & Molecular Science, University of Adelaide, North Terrace, Adelaide SA 5005, Adelaide, Australia
3Max-Delbrück Center for Molecular Medicine, Robert-Rössle-Straße 10, 13125 Berlin, Germany
4Murdoch Children's Research Institute, Royal Children´s Hospital, Flemington Road, Parkville VIC 3052, Melbourne, Australia
5Baker Heart Research Institute, Commercial Road, Melbourne VIC 3004, Melbourne, Australia
6Victor Chang Cardiac Research Institute, Victoria Street, Darlinghurst NSW 2010, Sydney, Australia
7Department of Paediatrics, University of Melbourne, Parkville VIC 3052, Melbourne, Australia

8Division of Craniofacial Medicine, Department of Pediatrics, University of Washington, Seattle, WA 98195, USA

Barbara Bachtler
Pressestelle
Max-Delbrück-Centrum für Molekulare Medizin (MDC) Berlin-Buch
Robert-Rössle-Straße 10
13125 Berlin
Tel.: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de

Barbara Bachtler | Max-Delbrück-Centrum
Weitere Informationen:
http://www.mdc-berlin.de/de/news/2008/index.html
http://www.mdc-berlin.de/de/news/2007/20070413-kranke_embryonale_herzen_k_nnen_sich_bis_z/index.html

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zirkuläre RNA wird in Proteine übersetzt
24.03.2017 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

nachricht Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen
24.03.2017 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise