Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Warum das Herz links schlägt

07.04.2009
Bei allen Wirbeltieren - und damit auch beim Menschen - schlägt das Herz im Normalfall auf der linken Körperseite. Warum das so ist, wird noch nicht bis ins letzte Detail verstanden. Würzburger Entwicklungsbiologen sind der Lösung dieses Rätsels jetzt einen entscheidenden Schritt näher gekommen.

Wenn aus einer befruchteten Eizelle während der Embryonalentwicklung ein lebensfähiger Organismus heranwachsen soll, müssen die Zellen unter anderem wissen, wo links und wo rechts ist, damit die Organe am Ende in der richtigen Form am richtigen Ort landen.

So entwickelt sich beispielsweise bei allen Wirbeltieren das Herz aus einem zunächst schlauchförmigen Gebilde, das bereits kurz nach seiner Entstehung eine Krümmung zur rechten Körperseite aufweist. Diese erste Asymmetrie hat zur Folge, dass am Ende - nach einer ganzen Reihe weiterer Drehungen - die Herzspitze zur linken Körperseite weist.

Wie der Körper rechts von links unterscheidet

Wie schafft es der Organismus, rechts von links zu unterscheiden? Und welche Prozesse sind dafür verantwortlich, dass beispielsweise das Herz im Normalfall links schlägt? Dieser Frage sind der Würzburger Entwicklungsbiologe Professor Thomas Brand und sein Mitarbeiter Dr. Jan Schlüter nachgegangen. Über ihr Ergebnis berichtet die aktuelle Online-Ausgabe der Proceedings of the National Academy of Sciences PNAS. Die beiden Forscher konnten an Hühnerembryonen einen Signalweg charakterisieren, der an der asymmetrischen Entwicklung des Herzens beteiligt ist.

"Bislang lautete die vorherrschende Meinung, dass ein bestimmter Signalweg für die linksseitige Entwicklung der Organe verantwortlich ist, der auf der rechten Seite gehemmt werden muss, damit sich eine Asymmetrie ausbilden kann", sagt Thomas Brand. Wie die beiden Entwicklungsbiologen nun zeigen, trifft diese Vorstellung nicht zu: "Wir konnten am Hühnerembryo nachweisen, dass es auch auf der rechten Seite einen eigenständigen Signalweg gibt", so Brand.

Asymmetrie ist die Regel, nicht die Ausnahme

Asymmetrie im Körper: Ist das nicht die Ausnahme von der Regel, die gerade mal Herz, Leber und Milz betrifft, während der überwiegende Teil quasi spiegelbildlich aufgebaut ist? "Überhaupt nicht", sagt Brand. Im Prinzip sei der ganze Körper asymmetrisch aufgebaut; damit er dennoch so symmetrisch aussehe, müssten während der Embryonalentwicklung etliche Signalkaskaden aktiv werden.

Mechanismen, die an der Recht-Links-Ausprägung beteiligt sind, haben Brand und Schlüter während ihrer Arbeit intensiv untersucht. Einer davon ist die asymmetrische Produktion von Ionenpumpen. "Dadurch kommt es zu einer ungleichen Verteilung von elektrischer Ladung auf der rechten und linken Körperseite, die den Zellen anscheinend die Richtung vorgibt", erklärt Brand. Eine Blockade dieser Ionenpumpen hatte bei den Experimenten der Entwicklungsbiologen eine zufällige Verteilung der Zellen im Herzen zur Folge, die Vorstufen der Herzkranzgefäße sind: Manchmal saßen sie, wie es normal ist, auf der rechten Seite; manchmal landeten sie links. In anderen Fällen siedelten sie sich auf beiden Seiten an; bisweilen fehlten sie völlig.

Tote Zellen geben die Richtung vor

"Dieser Effekt spielt also ebenfalls eine wichtige Rolle für die Seitenorientierung der Organe", sagt Thomas Brand. Als alleinige Erklärung für das "linksgelagerte Herz" reiche er jedoch nicht aus. Gleiches gelte für einen zweiten Mechanismus: den programmierten Zelltod. "In diesem Fall sorgt der Organismus dafür, dass entlang der Mittellinie des Embryos Zellen absterben, und dadurch die Grenze zwischen der linken und rechten Körperseite markiert wird", erklärt Brand. Verhinderten die Wissenschaftler diesen Zelltod, siedelten sich die Zellen ebenfalls dem Zufallsprinzip gehorchend im Herzen an.

FGF8: So lautet der Name des Signalfaktors, der nach den Erkenntnissen von Brand und Schlüter für die rechtsseitige Entwicklung des Hühnerherzens verantwortlich ist. Ihre Schlussfolgerung lautet deshalb: "Die Modelle für die Rechts-Links- Entwicklung müssen erweitert werden." Die Tatsache, dass auch andere Wirbeltiere, wie zum Beispiel der südafrikanische Krallenfrosch oder das Flussneunauge, auf vergleichbare Weise Herzen bilden, spräche dafür, dass dieser Aspekt der Recht-Links-Asymmetrie stammesgeschichtlich sehr alt ist.

Weitere Forschung notwendig

Ob er auch für Säugetiere und damit für den Menschen eine Bedeutung hat, ist unklar. Immerhin: "Mutationen für FGF8 rufen in Mäusen Herzmissbildungen hervor. Möglicherweise hat dieser Signalweg also sogar eine Bedeutung für die ganz am Anfang der Entwicklung stehende rechtsgerichtete Herzkrümmung", so Thomas Brand. Schwerpunkt seiner weiteren Forschungen werde es deshalb sein, die Zielgene dieses Signalwegs zu identifizieren, um diesen Aspekt der Herzentwicklung molekular besser zu verstehen.

Jan Schlueter und Thomas Brand (2009). A right-sided pathway involving FGF8/Snai1 controls asymmetric development of the proepicardium in the chick embryo. Proc Natl Acad Sci U. S. A. Early Edition (EE) the week of April 6, 2009. www.pnas.org/cgi/doi/10.1073/pnas.0811944106

Kontakt: Prof. Dr. Thomas Brand, Tel. (0931) 31-84259, E-Mail: thomas.brand@uni-wuerzburg.de

Gunnar Bartsch | idw
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Salmonellen als Medikament gegen Tumore
23.10.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht Add-ons: Was Computerprogramme und Proteine gemeinsam haben
23.10.2017 | Universität Regensburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonellen als Medikament gegen Tumore

HZI-Forscher entwickeln Bakterienstamm, der in der Krebstherapie eingesetzt werden kann

Salmonellen sind gefährliche Krankheitserreger, die über verdorbene Lebensmittel in den Körper gelangen und schwere Infektionen verursachen können. Jedoch ist...

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung

Seit dreißig Jahren gibt eine bestimmte Uranverbindung der Forschung Rätsel auf. Obwohl die Kristallstruktur einfach ist, versteht niemand, was beim Abkühlen unter eine bestimmte Temperatur genau passiert. Offenbar entsteht eine so genannte „versteckte Ordnung“, deren Natur völlig unklar ist. Nun haben Physiker erstmals diese versteckte Ordnung näher charakterisiert und auf mikroskopischer Skala untersucht. Dazu nutzten sie den Hochfeldmagneten am HZB, der Neutronenexperimente unter extrem hohen magnetischen Feldern ermöglicht.

Kristalle aus den Elementen Uran, Ruthenium, Rhodium und Silizium haben eine geometrisch einfache Struktur und sollten keine Geheimnisse mehr bergen. Doch das...

Im Focus: Schmetterlingsflügel inspiriert Photovoltaik: Absorption lässt sich um bis zu 200 Prozent steigern

Sonnenlicht, das von Solarzellen reflektiert wird, geht als ungenutzte Energie verloren. Die Flügel des Schmetterlings „Gewöhnliche Rose“ (Pachliopta aristolochiae) zeichnen sich durch Nanostrukturen aus, kleinste Löcher, die Licht über ein breites Spektrum deutlich besser absorbieren als glatte Oberflächen. Forschern am Karlsruher Institut für Technologie (KIT) ist es nun gelungen, diese Nanostrukturen auf Solarzellen zu übertragen und deren Licht-Absorptionsrate so um bis zu 200 Prozent zu steigern. Ihre Ergebnisse veröffentlichten die Wissenschaftler nun im Fachmagazin Science Advances. DOI: 10.1126/sciadv.1700232

„Der von uns untersuchte Schmetterling hat eine augenscheinliche Besonderheit: Er ist extrem dunkelschwarz. Das liegt daran, dass er für eine optimale...

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Konferenz IT-Security Community Xchange (IT-SECX) am 10. November 2017

23.10.2017 | Veranstaltungen

Die Zukunft der Luftfracht

23.10.2017 | Veranstaltungen

Ehrung des Autors Herbert W. Franke mit dem Kurd-Laßwitz-Sonderpreis 2017

23.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Magma sucht sich nach Flankenkollaps neue Wege

23.10.2017 | Geowissenschaften

Neues Sensorsystem sorgt für sichere Ernte

23.10.2017 | Informationstechnologie

Salmonellen als Medikament gegen Tumore

23.10.2017 | Biowissenschaften Chemie