Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Herpes viruses in action

22.05.2015

How herpes viruses bring the molecular biology of human cells into disarray: Scientists from Würzburg, Cambridge, and Munich present new findings in “Nature Communications”, casting doubt on previous knowledge in the field.

When a cold is coming on, many people notice that their lips start to itch. The reason for this is herpes simplex virus 1 (HSV-1). While the common cold sores are relatively harmless, the virus can also cause life-threatening disease. In intensive care units, for example, the virus commonly leads to severe lung infections. In healthy people, it can spontaneously cause inflammation of the brain, which regularly triggers irreversible brain damage.

The genetic material of the virus consists of DNA, like in humans. As soon as HSV-1 has penetrated into human cells, it smuggles its genome into the cell nucleus. This is where the molecular machinery is located that is used to read the genetic information of the DNA and to transcribe it into RNA molecules. This RNA then determines which proteins are produced by the cell.

In the cell nucleus, the virus takes full control of this machinery within a few hours of infection. It uses it to produce its own proteins and produce new virus particles on a massive scale. Formation of the cellular proteins soon becomes almost an irrelevance. In the end, the host cell dies off and thousands of new viruses are released that again infect other cells.

Reading of human DNA is disrupted

Virologists under Professor Lars Dölken who recently joined the University of Würzburg from the University of Cambridge (UK) are now presenting new details of this process in collaboration with the bioinformatics team led by Professor Caroline Friedel (LMU Munich). Their work has been published in the journal “Nature Communications”.

The researchers used cell cultures to comprehensively analyze the course of HSV-1 infection of human connective tissue cells (fibroblasts) and examine what happens with all the RNA molecules in the cells during the process. They used a new approach quantifying RNA synthesis, processing and translation in a single experimental setting using high-throughput sequencing.

As quickly as three to four hours after virus entry, the scientists observed a completely unexpected effect: The process of transcribing human DNA into RNA no longer stopped at the appropriate sites at the end of genes but simply carried on for tens-of-thousands of nucleotides and often across several neighboring genes. This creates masses of unusable RNA products that can no longer properly translate into proteins.

Interestingly, the viral DNA continued to be accurately transcribed throughout infection. Selectively interfering with transcription termination of cellular genes is of direct benefit to the virus. It enforces shut-off of the cell thereby interfering with any arising antiviral host response. In addition, it increases the synthesis of viral proteins and thus aids the production of new virus particles.

Hundreds of genes are aroused, but remain silent

The newly discovered mechanism can give the impression that the virus also activates a large number of genes in the cell, but this is actually not the case. “It is likely that experimental data was falsely interpreted in the past,” is the conclusion drawn by the researchers. According to their findings, hundreds of cellular genes seemingly activated by the viruses are not translated into proteins at all. “Unlike previous studies which only studied single genes, we also found no indication that the virus generally impedes the processing of RNA in the cell nucleus, known as splicing,” says Dölken. Instead, it causes unusual splicing events, many of which have never before been observed.

The research team from Würzburg, Cambridge, and Munich set a milestone in methodology with this work: With a single experimental approach it is possible to record all the changes that occur when transcribing and processing RNA as well as their impact on protein production.

Wide-spread disruption of host transcription termination in HSV-1 infection, Andrzej J. Rutkowski, Florian Erhard, Anne L’Hernault, Thomas Bonfert, Markus Schilhabel, Colin Crump, Philip Rosenstiel, Stacey Efstathiou, Ralf Zimmer, Caroline C. Friedel, Lars Dölken. Nature Communications, 20th May 2015, DOI: 10.1038/ncomms8126

Contact

Prof. Dr. Lars Dölken, Institute of Virology and Immunobiology, Julius Maximilian University of Würzburg, T +49 (0)931 31-88185, lars.doelken@vim.uni-wuerzburg.de

Prof. Dr. Caroline Friedel, Institute for Informatics (Bioinformatics), Ludwig Maximilian University of Munich, T +49 (0)89 2180-4056, Caroline.Friedel@bio.ifi.lmu.de

Robert Emmerich | Julius-Maximilians-Universität Würzburg
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Mit Barcodes der Zellentwicklung auf der Spur
17.08.2017 | Deutsches Krebsforschungszentrum

nachricht Magenkrebs: Auch Bakterien können Auslöser sein
17.08.2017 | Charité – Universitätsmedizin Berlin

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

Sensibilisierungskampagne zu Pilzinfektionen

15.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Graduiertenschule HyPerCells entwickelt hocheffiziente Perowskit- Dünnschichtsolarzelle

17.08.2017 | Energie und Elektrotechnik

Forschungsprojekt zu optimierten Oberflächen von Metallpulver-Spritzguss-Werkzeugen

17.08.2017 | Verfahrenstechnologie

Fernerkundung für den Naturschutz

17.08.2017 | Ökologie Umwelt- Naturschutz