Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wenn herabstürzende Moleküle bremsen

20.03.2013
Innsbrucker Ionenphysiker enträtseln chemische Austauschreaktionen

Wer die Kräfte hinter alltäglichen Prozessen der Organischen Chemie, wie bei der Produktion von Kunststoffen und Medikamenten, aber auch bei der Entstehung von Ruß verstehen will, stößt mitunter auf Unerwartetes.

Seine jüngste Entdeckung bezeichnet der Innsbrucker Physiker Prof. Roland Wester als „große Überraschung. Bei bestimmten, hochenergetischen, chemischen Austauschreaktionen ziehen Moleküle quasi im Sturzflug die Bremse. Dies ist ein weiterer Beleg dafür, dass chemische Reaktionen zwischen geladenen Teilchen (Ionen) und Molekülen komplexer ablaufen, als bisher angenommen.“ Das renommierte Journal of the American Chemical Society widmet dieser Entdeckung das Titelblatt seiner neuesten Ausgabe.

Bei chemischen Austauschreaktionen reagieren Ionen und Moleküle. Eine molekulare Gruppe wird dabei durch eine andere ersetzt. Auf diesem Weg entstehen komplexe, organische Moleküle. Diese so genannten „nukleophilen Substitutionsreaktionen“ sind daher eine der wichtigsten Reaktionsklassen in der Organischen Chemie. Was auf der Ebene der einzelnen Teilchen und Moleküle dabei wirklich im Detail passiert, ist zwar seit Langem Gegenstand intensiver Forschung, kann aber erst seit wenigen Jahren im Detail beobachtet werden.

Die Arbeitsgruppe um Jochen Mikosch, nun am National Research Council in Ottawa, Kanada, und Roland Wester ließ in einer eigens entwickelten Apparatur im Vakuum negativ geladene Fluor-Teilchen (F-) mit Jodmethan-Molekülen (CH3I) kollidieren. Bei dieser Reaktion entstanden zwar – wie in vielen Chemie-Lehrbüchern als Paradebeispiel angeführt – wegen des Austausches der Jod-Bindung durch eine Fluor-Bindung ein Fluormethan-Molekül und ein negativ geladenes Jod-Teilchen. Entgegen der Lehrbuch-Vorstellung läuft diese Austauschreaktion allerdings nicht wie eine einfache Stoßreaktion ab.

Forschung im Grenzgebiet zwischen Chemie und Physik
„Bei dieser Reaktion wird sehr viel Energie frei. Sie läuft aber trotzdem wie mit angezogener Handbremse ab. Dass ein herabstürzendes Molekül, wie in diesem Fall das erzeugte Fluormethan nicht schneller wird, hat uns daher aufs Erste sehr überrascht. Ein Grund dafür sind die Kräfteverhältnisse im Ausgangsmolekül. Hier möchte das Fluor-Ion (F-) sich zunächst rasch an das nächstgelegene Wasserstoff-Atom anbinden, bevor es das Produkt Fluormethan bildet. Dies versetzt das Produktmolekül so stark in Schwingung und Drehung, dass die freiwerdende Energie zum Großteil steckenbleibt“, erklärt der Physiker.

Nach dem jüngsten Ergebnis des internationalen Forschungsteams wirkt bei chemischen Austauschreaktionen eine vielfältige Dynamik. Die eigentliche Stoßreaktion zwischen Ion und Molekül ist dabei laut Wester nur ein Faktor. Ausschlaggebend für das Reaktionsergebnis sind auch die Kräfteverhältnisse im Ausgangs-Komplex und deren Anordnung. Parallel zu den Laborexperimenten wurde in Zusammenarbeit mit Forschern um William Hase aus den USA diese chemische Austauschreaktion in aufwendigen Rechnungen im Computer simuliert. Dabei wurden nahezu deckungsgleiche Ergebnisse gefunden. „Die eigens entwickelten Computerprogramme und die Laborexperimente ermöglichen uns nun erstmals im Grenzgebiet zwischen Chemie und Physik auch kompliziertere Reaktionen in der Organischen Chemie besser zu verstehen“, sagt Wester. Beispiele dafür sind Verbrennungsprozesse, die Katalyse von Molekülen an Oberflächen oder von Biomolekülen in Lösung.

Gefördert wurden diese Forschungen von der Deutschen Forschungsgemeinschaft und der Europäischen Kommission. Wester wurde für seine Arbeiten im Feld der Ionen-Molekül-Reaktionen 2009 mit dem Gustav-Hertz-Preis ausgezeichnet. Der Physiker forscht und lehrt seit Oktober 2010 als Professor am Institut für Ionenphysik und Angewandte Physik der Universität Innsbruck und ist seit dem Vorjahr Vorstand des Institutes.

Bilder: http://www.uibk.ac.at/ionen-angewandte-physik/media/photos.html

Publikation: Indirect Dynamics in a Highly Exoergic Substitution Reaction. J. Mikosch, J. Zhang, S. Trippel, C. Eichhorn, R. Otto, R. Sun, W. A. de Jong, M. Weidemüller, W. L. Hase, R. Wester. J. Am. Chem. Soc. Volume 135, Issue 11, pp 4161-4574

doi: 10.1021/ja308042v

Kontakt:
Univ.-Prof. Dr. Roland Wester
Institut für Ionenphysik und Angewandte Physik
Technikerstrasse 25, A-6020 Innsbruck
Telefon: +43 512 507-6420
Mail: roland.wester@uibk.ac.at
Web: http://www.uibk.ac.at/ionen-angewandte-physik/molsyst/
Mag.a Gabriele Rampl
Public Relations Ionenphysik
Telefon: +43 650 2763351
Mail: office@scinews.at
Web: http://www.uibk.ac.at/ionen-angewandte-physik/media/

Gabriele Rampl | SciNews
Weitere Informationen:
http://www.uibk.ac.at

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Forscher beschreiben neuartigen Antikörper als möglichen Wirkstoff gegen Alzheimer
22.08.2017 | Martin-Luther-Universität Halle-Wittenberg

nachricht Virus mit Eierschale
22.08.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wissenschaftler entdecken seltene Ordnung von Elektronen in einem supraleitenden Kristall

In einem Artikel der aktuellen Ausgabe des Forschungsmagazins „Nature“ berichten Wissenschaftler vom Max-Planck-Institut für Chemische Physik fester Stoffe in Dresden von der Entdeckung eines seltenen Materiezustandes, bei dem sich die Elektronen in einem Kristall gemeinsam in einer Richtung bewegen. Diese Entdeckung berührt eine der offenen Fragestellungen im Bereich der Festkörperphysik: Was passiert, wenn sich Elektronen gemeinsam im Kollektiv verhalten, in sogenannten „stark korrelierten Elektronensystemen“, und wie „einigen sich“ die Elektronen auf ein gemeinsames Verhalten?

In den meisten Metallen beeinflussen sich Elektronen gegenseitig nur wenig und leiten Wärme und elektrischen Strom weitgehend unabhängig voneinander durch das...

Im Focus: Wie ein Bakterium von Methanol leben kann

Bei einem Bakterium, das Methanol als Nährstoff nutzen kann, identifizierten ETH-Forscher alle dafür benötigten Gene. Die Erkenntnis hilft, diesen Rohstoff für die Biotechnologie besser nutzbar zu machen.

Viele Chemiker erforschen derzeit, wie man aus den kleinen Kohlenstoffverbindungen Methan und Methanol grössere Moleküle herstellt. Denn Methan kommt auf der...

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

International führende Informatiker in Paderborn

21.08.2017 | Veranstaltungen

Wissenschaftliche Grundlagen für eine erfolgreiche Klimapolitik

21.08.2017 | Veranstaltungen

DGI-Forum in Wittenberg: Fake News und Stimmungsmache im Netz

21.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fraunhofer IPM präsentiert »Deep Learning Framework« zur automatisierten Interpretation von 3D-Daten

22.08.2017 | Informationstechnologie

Globale Klimaextreme nach Vulkanausbrüchen

22.08.2017 | Geowissenschaften

RWI/ISL-Containerumschlag-Index erreicht neuen Höchstwert

22.08.2017 | Wirtschaft Finanzen