Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Hepatitis C-Viren nutzen Überlebensstrategie infizierter Zellen für eine chronische Infektion aus

06.09.2012
Wissenschaftler des Universitätsklinikums und der Universität Heidelberg zeigen: Viren profitieren vom Wechselspiel aktiver und passiver Phasen der Eiweißproduktion in infizierten Zellen / Veröffentlichung in der Fachzeitschrift „Cell, Host & Microbe“

Zellen wehren sich gegen Virusinfektionen, indem sie ihre eigene Eiweißproduktion stoppen – und damit gleichzeitig die Bildung neuer Viren. Diese Ruhephasen wechseln sich mit aktiven Phasen ab, in denen die Eiweißbildung wieder in Gang kommt, denn ein zu langes Abschalten führt zum Zelltod.


Zellen, die mit dem Hepatitis C-Virus infiziert sind (rot, wobei der Zellkern grün markiert ist) durchlaufen Stressphasen, erkennbar an den grünen Punkten. Diese Stress-Granula bilden sich im Zellinnern, wenn die Proteinproduktion gestoppt wird, und lösen sich auf, wenn sie wieder in Gang kommt.

Foto: Universitätsklinikum Heidelberg

Hepatitis C-Viren nutzen dieses Wechselspiel aus, um sich dauerhaft in der Zelle einzunisten, wie Wissenschaftler des Departments für Infektionskrankheiten am Universitätsklinikum Heidelberg und des BioQuant Center der Universität Heidelberg jetzt herausfanden. Die Forschungsergebnisse, die aktuell im Journal „Cell, Host & Microbe“ veröffentlicht wurden, tragen grundlegend zum Verständnis des komplexen Wechselspiels bei der Etablierung einer chronischen Virusinfektion bei.

Geraten Körperzellen in Stress, z.B. durch eine eingeschränkte Versorgung mit Nährstoffen oder Sauerstoff, fahren sie die Neubildung zelleigener Eiweiße (Proteine) herunter. So sparen sie Energie, um notfalls Zellschäden reparieren und unter widrigen Bedingungen eine bestimmte Zeit überleben zu können. Eben dieser Schutzmechanismus wird auch aktiviert, wenn sich im Zellinnern bestimmte Viren wie etwa das Hepatitis C-Virus vermehren.

Das ist sinnvoll: Die Viren zwingen die infizierte Wirtszelle dazu, neue Erreger nachzubauen. Dazu muss sie zunächst bestimmte Proteine herstellen, deren Bauanleitung sich auf dem Virenerbgut befindet. Drosselt die Zelle die Proteinproduktion, können auch keine neuen Viren entstehen. Wenn die Proteinproduktion jedoch sehr lange gehemmt wird, stirbt die Wirtszelle, was ebenfalls die Virusproduktion unterbindet, allerdings den Wirtsorganismus schädigt.

„Wir haben uns gefragt, warum trotz dieses Schutzmechanismus so viele Viren entstehen und wie es bei Infektionen mit bestimmten Viren wie etwa dem Hepatitis C-Virus zu einer Chronifizierung kommen kann“, sagt Erstautorin Dr. Alessia Ruggieri, Abteilung Molekulare Virologie des Departments für Infektiologie. Bei einer chronischen Infektion versagt offensichtlich diese zelluläre Abwehr und die Infektion bleibt mitunter lebenslang bestehen. Nach Schätzungen der WHO leiden weltweit rund 170 Millionen Menschen an chronischer Hepatitis C. Sie tragen ein sehr hohes Risiko, an Leberzirrhose und Leberkrebs zu erkranken.

Zelle muss Eiweißproduktion wieder aufnehmen

Die Wissenschaftler studierten mit einer speziellen Mikroskopiertechnik die Vorgänge in lebenden, mit Hepatitis C-Viren infizierten Leberzellen. Dazu entwickelte ein Team um Privatdozent Dr. Karl Rohr, Leiter der Biomedical Computer Vision Group am BioQuant Center der Universität Heidelberg, ein neues Verfahren, um die Vorgänge im zeitlichen Verlauf verfolgbar zu machen. Als Marker für den aktivierten Schutzmechanismus dienten sogenannte Stress-Granula: Diese kleinen Körnchen bilden sich im Zellinnern, wenn die Proteinproduktion gestoppt wird, und lösen sich auf, wenn sie wieder in Gang kommt. Die Granula verrieten: In den infizierten Zellen wechseln sich beständig Phasen unterdrückter und aktiver Proteinproduktion ab.

Das Team identifizierte zudem die zwei Zellfaktoren, die den kontinuierlichen Wechsel kontrollieren: Die Protein-Kinase R erkennt bestimmte Zwischenstufen der Virusvermehrung und blockiert unmittelbar die Bildung weitere Proteine in der Zelle. Gleichzeitig wird auch ein Zellfaktor aktiviert, der die Blockade wieder aufhebt, die Protein-Phosphatase 1. „Mit Hilfe dieses Proteins kann die Zelle ihren Stoffwechsel vorübergehend wieder aufnehmen, andernfalls würde sie sehr schnell zugrunde gehen“, erklärt Dr. Ruggieri. Da beide Faktoren in der infizierten Zelle kontinuierlich aktiv sind, läuft die Proteinproduktion nach kurzer Zeit wieder an, um dann erneut gestoppt zu werden; das System oszilliert.

Dieser beständige Wechsel zwischen aktiver und inaktiver Proteinproduktion reicht einerseits für eine effektive Vermehrung des Hepatitis C Virus aus, andererseits wird eine zu lange Hemmung der Proteinproduktion verhindert, so dass die Zelle nicht abstirbt. „Damit scheint dieser Pendelmechanismus eine chronische Infektion sogar zu begünstigen, da die Zellen trotz Virusinfektion überleben“, sagt Professor Dr. Ralf Bartenschlager, Leiter der Abteilung für Molekulare Virologie am Department für Infektiologie. „Diese Ergebnisse sind ein wichtiges Puzzleteil, um die komplexe Interaktion zwischen Viren und Wirtszelle zu verstehen.“

Literatur:
Alessia Ruggieri, Eva Dazert, Philippe Metz, Sarah Hofmann, Jan-Philip Bergeest, Johanna Mazur, Peter Bankhead, Marie-Sophie Hiet, Stephanie Kallis, Gualtiero Alvisi, Charles E. Samuel, Volker Lohmann, Lars Kaderali, Karl Rohr, Michael Frese, Georg Stoecklin, Ralf Bartenschlager: Dynamic Oscillation of Translation and Stress Granule Formation Mark the Cellular Response to Virus Infection. Cell Host & Microbe, Volume 12, Issue 1, 71-85, 19 July 2012

Internet: http://www.klinikum.uni-heidelberg.de/Molecular-Virology.104862.0.html

Kontakt:
Prof. Dr. Ralf Bartenschlager
Department für Infektiologie
Leitender Direktor der Abteilung Molekulare Virologie
Tel.: 06221 56-4569
E-Mail: Ralf.Bartenschlager@med.uni-heidelberg.de

Universitätsklinikum und Medizinische Fakultät Heidelberg
Krankenversorgung, Forschung und Lehre von internationalem Rang
Das Universitätsklinikum Heidelberg ist eines der größten und renommiertesten medizinischen Zentren in Deutschland; die Medizinische Fakultät der Universität Heidelberg zählt zu den international bedeutsamen biomedizinischen Forschungseinrichtungen in Europa. Gemeinsames Ziel ist die Entwicklung neuer Therapien und ihre rasche Umsetzung für den Patienten. Klinikum und Fakultät beschäftigen rund 11.000 Mitarbeiter und sind aktiv in Ausbildung und Qualifizierung. In mehr als 50 Departments, Kliniken und Fachabteilungen mit ca. 2.000 Betten werden jährlich rund 550.000 Patienten ambulant und stationär behandelt. Derzeit studieren ca. 3.600 angehende Ärzte in Heidelberg; das Heidelberger Curriculum Medicinale (HeiCuMed) steht an der Spitze der medizinischen Ausbildungsgänge in Deutschland.

Bei Rückfragen von Journalisten:
Dr. Annette Tuffs
Leiterin Unternehmenskommunikation / Pressestelle
des Universitätsklinikums Heidelberg und der
Medizinischen Fakultät der Universität Heidelberg
Im Neuenheimer Feld 672
69120 Heidelberg
Tel.: 06221 56-4536
Fax: 06221 56-4544
E-Mail: annette.tuffs@med.uni-heidelberg.de

Julia Bird
Referentin Unternehmenskommunikation / Pressestelle
des Universitätsklinikums Heidelberg und der
Medizinischen Fakultät der Universität Heidelberg
Im Neuenheimer Feld 672
69120 Heidelberg
Tel.: 06221 56-7071
Fax: 06221 56-4544
E-Mail: julia.bird@med.uni-heidelberg.de

Dr. Annette Tuffs | idw
Weitere Informationen:
http://www.klinikum.uni-heidelberg.de
http://www.klinikum.uni-heidelberg.de/Molecular-Virology.104862.0.html

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Proteine zueinander finden
21.02.2017 | Charité – Universitätsmedizin Berlin

nachricht Kleine Moleküle gegen altersbedingte Erkrankungen
21.02.2017 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Zinn in der Photodiode: nächster Schritt zur optischen On-Chip-Datenübertragung

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium allein – die stoffliche Basis der Chip-Produktion – sind als Lichtquelle kaum geeignet. Jülicher Physiker haben nun gemeinsam mit internationalen Partnern eine Diode vorgestellt, die neben Silizium und Germanium zusätzlich Zinn enthält, um die optischen Eigenschaften zu verbessern. Das Besondere daran: Da alle Elemente der vierten Hauptgruppe angehören, sind sie mit der bestehenden Silizium-Technologie voll kompatibel.

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium...

Im Focus: Innovative Antikörper für die Tumortherapie

Immuntherapie mit Antikörpern stellt heute für viele Krebspatienten einen Erfolg versprechenden Ansatz dar. Weil aber längst nicht alle Patienten nachhaltig von diesen teuren Medikamenten profitieren, wird intensiv an deren Verbesserung gearbeitet. Forschern um Prof. Thomas Valerius an der Christian Albrechts Universität Kiel gelang es nun, innovative Antikörper mit verbesserter Wirkung zu entwickeln.

Immuntherapie mit Antikörpern stellt heute für viele Krebspatienten einen Erfolg versprechenden Ansatz dar. Weil aber längst nicht alle Patienten nachhaltig...

Im Focus: Durchbruch mit einer Kette aus Goldatomen

Einem internationalen Physikerteam mit Konstanzer Beteiligung gelang im Bereich der Nanophysik ein entscheidender Durchbruch zum besseren Verständnis des Wärmetransportes

Einem internationalen Physikerteam mit Konstanzer Beteiligung gelang im Bereich der Nanophysik ein entscheidender Durchbruch zum besseren Verständnis des...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: Hoch wirksamer Malaria-Impfstoff erfolgreich getestet

Tübinger Wissenschaftler erreichen Impfschutz von bis zu 100 Prozent – Lebendimpfstoff unter kontrollierten Bedingungen eingesetzt

Tübinger Wissenschaftler erreichen Impfschutz von bis zu 100 Prozent – Lebendimpfstoff unter kontrollierten Bedingungen eingesetzt

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Der Lkw der Zukunft kommt ohne Fahrer aus

21.02.2017 | Veranstaltungen

Physikerinnen und Physiker diskutieren in Bremen über aktuelle Grenzen der Physik

21.02.2017 | Veranstaltungen

Kniffe mit Wirkung in der Biotechnik

21.02.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rittal vereinbart mit den Betriebsräten Sozialpläne

21.02.2017 | Unternehmensmeldung

Der Lkw der Zukunft kommt ohne Fahrer aus

21.02.2017 | Veranstaltungsnachrichten

Zur Sprache gebracht: Und das intelligente Haus „hört zu“

21.02.2017 | Messenachrichten