Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Hepatitis-B-Viren als tickende Zeitbomben

20.06.2016

Das Hepatitis-B-Virus (HBV) verursacht Hepatitis B, eine Infektion der Leber, die 230 Millionen Menschen weltweit betrifft, davon 440 000 allein in Deutschland. Meist versteckt sich das Virus über lange Zeit in den Leberzellen, was häufig zu Leberzirrhose und Leberkrebs führt. Forscher aus dem Deutschen Krebsforschungszentrum (DKFZ) und dem Zentrum für Infektiologie am Universitätsklinikum Heidelberg haben nun einen völlig neuen Reifungsmechanismus entdeckt, mit dem das Hepatitis-B-Virus die Effizienz seiner Infektion erhöht. Damit liefern sie ein neues Modell zum Verständnis der Hepatitis-B-Erkrankung.

Um Zellen infizieren zu können, müssen Viren zunächst an spezielle Rezeptor-Eiweiße auf der Zelloberfläche binden. Das Hepatitis-B-Virus bindet mit einem Abschnitt seines "L-Proteins" in der Virushülle an Heparansulfalt-Proteoglykane (HSPG) auf Leberzellen. Daraufhin wird es in die Zelle aufgenommen und kann sich dort vermehren.


Immunhistochemie: Nur Hepatitisviren (grün) vom N-Typ (links) können Leberzellen (rot) infizieren, HBV vom B-Typ (rechts) nicht.

Quelle: Universitätsklinikum Heidelberg / S.Seitz

"Die Effizienz, mit der das Hepatitis-B-Virus Zellen infiziert, liegt mehrere Größenordnungen über der der meisten anderen Viren", sagt Stefan Seitz, Erstautor der Studie, der am Zentrum für Infektiologie, Molekulare Virologie, des Universitätsklinikums Heidelberg und am DKFZ arbeitet. In der Tat infiziert das Hepatitis-B-Virus hochspezifisch Leberzellen.

Dies ist umso erstaunlicher angesichts der Tatsache, dass die HSPG-Moleküle, die dem Virus als Rezeptor dienen, quasi auf allen Zelltypen im menschlichen Körper vorkommen. "Für ein Virus, das ein Organ erreichen muss, das weit weg von der Eintrittspforte in den Körper liegt, scheint das HSPG der ungünstigste Rezeptor zu sein, den man sich vorstellen kann", fügt Seitz hinzu. Diesen Widerspruch wollten die Wissenschaftler aufklären.

Dabei halfen ihnen zwei kürzlich aufgedeckte Geheimnisse des Virus. Erstens zeigten neue elektronenmikroskopische Aufnahmen des Hepatitis-B-Virus, dass der Erreger in zwei verschiedenen Varianten vorkommt, die unterschiedlich aussehen. Zweitens kann das L-Protein in der Virushülle ebenfalls zwei verschiedene Formen annehmen. In einem Fall ist der Abschnitt, der an den Rezeptor auf der Leberzelle bindet, ins Innere des Viruspartikels gerichtet, im anderen Fall nach außen. Nur die nach außen gerichtete Form ermöglicht es dem Virus, Leberzellen zu infizieren.

Seitz und seine Kollegen hielten es für wahrscheinlich, dass ein Zusammenhang zwischen diesen beiden Beobachtungen besteht. Sie stellten die Hypothese auf, dass die Hepatitis-B-Viren ihre Gestalt verändern, während sie die Orientierung des L-Proteins wechseln. Um diese Hypothese zu überprüfen, etablierten sie einen biochemischen Test, mit dem sie die reife, an HSPG bindende Variante B von der unreifen Variante N, die nicht an HSPG binden kann, unterscheiden konnten. Die anschließende Analyse ergab, dass nahezu alle Viren die Zellen im unreifen Zustand (N) verlassen und sich dann spontan in die reife, bindende (B) Form verwandeln, indem sie den Rezeptor-bindenden Abschnitt des L-Proteins von innen nach außen stülpen.

Das Reifen der Viren vom N-Typ in den infektiösen B-Typ stellte sich als langsamer Prozess heraus. Nachdem die Wissenschaftler eine geringe Anzahl von Viren in Mäuse injiziert hatten, blieben die B-Typ-Viren zum großen Teil an anderen Geweben hängen. Die N-Typ-Viren erreichten dagegen in großer Zahl ihr Zielorgan, die Leber und konnten dort - nachdem sie sich in die B-Form umgewandelt hatten - die Leberzellen infizieren.

Dieser langsame Wandlungsprozess scheint die Effektivität der Hepatitis-Infektion zu erhöhen. Er erklärt auch, warum selbst geringe Virusmengen Leberzellen hochspezifisch infizieren, obwohl HSPG-Rezeptoren im Körper weit verbreitet sind. "In der unreifen N-Form sind die Viren inaktiv und können daher konstant mit dem Blutstrom mitschwimmen, bis sie die Leber erreichen, wo sie schließlich aufgehalten werden. Sobald sie hier in die reife B-Form wechseln, sind sie in der Lage, die Leberzellen zu infizieren.

Ralf Bartenschlager, der Letztautor der Studie, der sowohl im Zentrum für Infektiologie, Molekulare Virologie des Universitätsklinikums, als auch im DKFZ eine Forschungsabteilung leitet, fasst zusammen: "Das ist ein bisher unbekannter und sehr eleganter Mechanismus für einen viralen Reifungsprozess, der sich fundamental von allen bisher beschriebenen unterscheidet. Unsere Studie zeigt auch, dass Hepatitis-B-Viren keine starren unbeweglichen Objekte sind, sondern hochbewegliche Miniaturmaschinen mit einem präzise laufenden Uhrwerk. Eigentlich handelt es sich um kleine tickende Zeitbomben, die plötzlich molekulare Enterhaken herausschleudern, um ihre Zielzellen zu infizieren."

Seitz und Bartenschlager gehen davon aus, dass der neu entdeckte Mechanismus einen neuen Angriffspunkt für Medikamente bietet. "Man könnte Substanzen entwickeln, die die Viren im unreifen, nicht-infektiösen Zustand blockieren. Solche Hemmstoffe könnten die Therapie der chronischen Hepatitis B unterstützen, die nach wie vor unheilbar ist und eine häufige Ursache für Leberkrebs darstellt", sagt Stefan Seitz.

Die Gruppe um Seitz und Bartenschlager hat schon das nächste Ziel vor Augen: Sie möchten nun genau verstehen, wie der Reifungsprozess im molekularen Detail abläuft, wodurch er ausgelöst wird und wie man ihn hemmen kann. "Wenn wir es schaffen, die chronische Hepatitis-B-Virus Infektion zu unterbrechen und das Virus zu eliminieren, könnten wir das Krebsrisiko von Infizierten drastisch reduzieren", sagt Bartenschlager.

Stefan Seitz, Caroline Iancu, Tassilo Volz, Walter Mier, Maura Dandri, Stephan Urban, Ralf Bartenschlager: "A Slow Maturation Process Renders Hepatitis B Virus Infectious" in: Cell Host & Microbe, 16.6.2016. DOI: http://dx.doi.org/10.1016/j.chom.2016.05.013

Zwei Bilder zur Pressemitteilung stehen zur Verfügung unter:

http://www.dkfz.de/de/presse/pressemitteilungen/2016/bilder/SmilingHBV.jpg
Bildlegende: Hepatitis-B-Viren haben bald nichts mehr zu lachen: Elektronenmikroskopische Aufnahme von Hepatitis-B-Viren (große ovale Strukturen mit dunklem Kern) und nicht-infektiöse Virushüllen (kleine runde bzw. längliche Strukturen).

http://www.dkfz.de/de/presse/pressemitteilungen/2016/bilder/Immunhisto-HBV.jpg
Bildlegende: Immunhistochemie: Nur Hepatitisviren (grün) vom N-Typ (links) können Leberzellen (rot) infizieren, HBV vom B-Typ (rechts) nicht.

Quelle: Universitätsklinikum Heidelberg / S.Seitz

Das Deutsche Krebsforschungszentrum (DKFZ) ist mit mehr als 3.000 Mitarbeiterinnen und Mitarbeitern die größte biomedizinische Forschungseinrichtung in Deutschland. Über 1000 Wissenschaftlerinnen und Wissenschaftler erforschen im DKFZ, wie Krebs entsteht, erfassen Krebsrisikofaktoren und suchen nach neuen Strategien, die verhindern, dass Menschen an Krebs erkranken. Sie entwickeln neue Methoden, mit denen Tumoren präziser diagnostiziert und Krebspatienten erfolgreicher behandelt werden können. Die Mitarbeiterinnen und Mitarbeiter des Krebsinformationsdienstes (KID) klären Betroffene, Angehörige und interessierte Bürger über die Volkskrankheit Krebs auf. Gemeinsam mit dem Universitätsklinikum Heidelberg hat das DKFZ das Nationale Centrum für Tumorerkrankungen (NCT) Heidelberg eingerichtet, in dem vielversprechende Ansätze aus der Krebsforschung in die Klinik übertragen werden. Im Deutschen Konsortium für Translationale Krebsforschung (DKTK), einem der sechs Deutschen Zentren für Gesundheitsforschung, unterhält das DKFZ Translationszentren an sieben universitären Partnerstandorten. Die Verbindung von exzellenter Hochschulmedizin mit der hochkarätigen Forschung eines Helmholtz-Zentrums ist ein wichtiger Beitrag, um die Chancen von Krebspatienten zu verbessern. Das DKFZ wird zu 90 Prozent vom Bundesministerium für Bildung und Forschung und zu 10 Prozent vom Land Baden-Württemberg finanziert und ist Mitglied in der Helmholtz-Gemeinschaft deutscher Forschungszentren.

Ansprechpartner für die Presse:

Dr. Stefanie Seltmann
Leiterin Presse- und Öffentlichkeitsarbeit Deutsches Krebsforschungszentrum Im Neuenheimer Feld 280
69120 Heidelberg
T: +49 6221 42-2854
F: +49 6221 42-2968
E-Mail: S.Seltmann@dkfz.de

Dr. Sibylle Kohlstädt
Presse- und Öffentlichkeitsarbeit
Deutsches Krebsforschungszentrum
Im Neuenheimer Feld 280
69120 Heidelberg
T: +49 6221 42 2843
F: +49 6221 42 2968
E-Mail: S.Kohlstaedt@dkfz.de

E-Mail: presse@dkfz.de

www.dkfz.de 

Dr. Stefanie Seltmann | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie