Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Hell erleuchtet: Neuartige Kernspin-Diagnostik kann krankhafte Zellen aufspüren

29.07.2014

Berliner Zellbiologen, Chemikern und Physikern gelingt ein Beweis für die Funktionsfähigkeit der markierenden Xenon-Kernspintomographie. Mit der Methode könnte man gezielt krankhafte Veränderungen oder bestimmte Körperzellen sichtbar machen.

Untersuchungen mittels MRT, gemeinläufig auch Kernspintomographie genannt, sind aus dem klinischen Alltag nicht mehr wegzudenken – ganz ohne Strahlenbelastung können Ärzte damit in Patienten hineinblicken und Organe und Gewebestrukturen sichtbar machen.


Author: Honor Rose

Doch soweit fortgeschritten die Bildgebung inzwischen auch ist, krankhafte Veränderungen im Anfangsstadium lassen sich dadurch nur schwer erkennen: Geringe Mengen entarteter Krebszellen, winzige Entzündungen oder Ablagerungen in den Arterien bleiben auf den grauen Bildern bislang praktisch unsichtbar.

Eine Handvoll Arbeitsgruppen weltweit arbeitet daher an der Xenon-Kernspintomographie, einer besonderen Weiterentwicklung der herkömmlichen MRT. Der Gruppe von Leif Schröder am Leibniz-Institut für Molekulare Pharmakologie (FMP) in Berlin-Buch ist dabei nun ein wichtiger Erfolg in Kooperation mit Christian Freund vom Institut für Chemie und Biochemie der Freien Universität Berlin gelungen:

Sie konstruierten molekulare Sonden, die sich gezielt an bestimmte Proteine auf der Zelloberfläche anheften, welche bei Entzündungsprozessen eine Rolle spielen. Diese Sonden ließen sich dann mittels Magnetfeld und Radiowellen millimetergenau lokalisieren. Wichtig dabei: Solche Sonden könnten sehr einfach an nahezu jeden gesuchten Zelltyp oder Oberflächenmarker angepasst werden, so dass man mit der Methode je nach Wunsch ganz unterschiedliche krankheitsspezifische Marker im Körper eines Menschen aufspüren könnte.

Dem Versuch vorausgegangen war eine längere Entwicklungsarbeit an den technischen Voraussetzungen für die neuartige Diagnostik. Bei der Kernspintomographie nutzt man die Eigenschaft mancher Atome aus, sich in starken Magnetfeldern selbst wie winzige Magneten zu verhalten, die dann mit Radiowellen in Resonanz treten können und so Signale aussenden.

Beim herkömmlichen MRT vermisst man Wasserstoffatome, die in Gewebe allgegenwärtig sind, allerdings nur sehr schwache Signale aussenden. Die Xenon-Kernspintomographie dagegen verwendet als Signalgeber das Edelgas Xenon in einer bestimmten Form -- es wird vor der Untersuchung mittels Laserstrahlen "hyperpolarisiert" und sendet dadurch 10.000fach stärkere Signale als normal aus. In einer klinischen Anwendung könnten Patienten Xenon inhalieren, das ungiftige Edelgas würde sich dann über den Blutkreislauf im Körper verteilen.

Die enorme Verstärkung des Signals macht es im Prinzip möglich, auch unsichtbar kleine Details im Gewebe farbig zu markieren – wenn es gelingt, die Xenon-Atome an Zielstrukturen zu koppeln. Dieser Schritt ist nun erstmals am FMP mit einer Art Baukastensystem gelungen.

Die Zellbiologin Honor Rose, die vor einem Jahr zu der vor allem aus Physikern bestehenden Gruppe gestoßen war, wählte dafür Antikörper, die spezifisch an Oberflächenmoleküle von Makrophagen binden – diese Immunzellen spielen zum Beispiel bei entzündlichen Prozessen wie Arteriosklerose eine Rolle. Über Verbindungsmoleküle knüpfte sie diese Antikörper dann an Cryptophan-Moleküle, die mit ihrer Käfigstruktur Xenon-Atome einfangen und dadurch deren Signal im Magnetfeld verändern.

Das Edelgas Xenon, das auch in Autoscheinwerfern eingesetzt wird, wirkt auf diese Weise wie eine Art atomarer Scheinwerfer: Die gesuchten Zellen heben sich nun deutlich vor dem Hintergrund anderer Zellen ab. „Damit haben wir für das Verfahren ganz entscheidende Fragen geklärt", sagt Honor Rose.

„Bislang hatte man es geschafft, Signale guter Stärke und Auflösung durch Xenon und Cryptophan zu erzeugen – jedoch war das noch nicht krankheitsspezifisch. Wir haben aber nun den Schritt hin zu einer differenzierten Anwendung auf Zellebene getan. Niemand wusste zuvor, wie viel Cryptophan man für Signale braucht, um einen krankheitsspezifischen Marker aufzuspüren, und ob das überhaupt physiologisch verträglich wäre." Bei ihrem Testlauf mit unterschiedlichen Zellen in kleinen Röhrchen im Kernspintomographen hatten winzige Konzentrationen der molekularen Sonden ausgereicht, die für die Zellen unschädlich waren.

Vom Teströhrchen bis zur klinischen Anwendung wird es noch ein langer Weg – vorstellbar ist aber, dass eines Tages Ärzte nicht mehr nur graue MRT-Bilder analysieren, sondern mit unterschiedlichen Sonden farbige Markierung vorfinden. Das könnten zum Beispiel arteriosklerotische Plaques sein, die unbehandelt zu einem Herzinfarkt führen, Metastasen bei Krebserkrankungen oder auch der Aufbau von Krebsgewebe aus unterschiedlichen Zelltypen.

„Die Xenon-Kernspintomographie ist jetzt an einem Punkt angelangt, an dem man sich viele Anwendungen auf Zellebene ausdenken kann", sagt Leif Schröder. „Wir erwarten zahlreiche Veröffentlichungen in der nahen Zukunft; dieses Forschungsfeld ist momentan sehr aktiv."

Die Berliner Veröffentlichung erscheint in den renommierten Proceedings of the National Academy of Sciences of the U.S.A.: „Die Arbeit bedeutet einen großen Sprung nach vorn in der Entwicklung von Biosensoren und wird auch über das Forschungsfeld hinaus von großem Einfluss ein“, urteilen die Gutachter des Fachjournals.

Das Leibniz-Institut für Molekulare Pharmakologie (FMP) gehört zum Forschungsverbund Berlin e.V. (FVB), einem Zusammenschluss von acht natur-, lebens- und umweltwissenschaftlichen Instituten in Berlin. In ihnen arbeiten mehr als 1.500 Mitarbeiter. Die vielfach ausgezeichneten Einrichtungen sind Mitglieder der Leibniz-Gemeinschaft. Entstanden ist der Forschungsverbund 1992 in einer einzigartigen historischen Situation aus der ehemaligen Akademie der Wissenschaften der DDR.

Kontakt:
Dr. Leif Schröder
Leibniz-Institut für Molekulare Pharmakologie (FMP)
lschroeder (at) fmp-berlin.de
Tel.: 0049 30 94793-121

Silke Oßwald
Öffentlichkeitsarbeit
Leibniz-Institut für Molekulare Pharmakologie (FMP)
osswald (at) fmp-berlin.de
Tel.: 0049 30 94793-104

Weitere Informationen:

http://www.pnas.org/cgi/doi/10.1073/pnas.1406797111

Silke Oßwald | idw - Informationsdienst Wissenschaft

Weitere Berichte zu: Antikörper Edelgas FMP Gewebe Kernspintomographie MRT Magnetfeld Marker Pharmakologie Radiowellen Signale Xenon Zellebene Zellen

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Eine Karte der Zellkraftwerke
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung
18.08.2017 | Deutsches Zentrum für Infektionsforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

„Wolkenmacher“: Wie Unternehmen Vertrauen aufbauen

18.08.2017 | Unternehmensmeldung

Beschichtung lässt Muscheln abrutschen

18.08.2017 | Materialwissenschaften

Fettleber produziert Eiweiße, die andere Organe schädigen können

18.08.2017 | Biowissenschaften Chemie