Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Helicobacter pylori - Auslöser für molekulare Giftspritze entschlüsselt

18.10.2016

LMU-Wissenschaftler haben ein Molekülpaar identifiziert, das entscheidend daran beteiligt ist, dass das Magenbakterium Helicobacter pylori Krankheiten auslöst.

Das stäbchenförmige Bakterium Helicobacter pylori besiedelt den menschlichen Magen und kann dort unter anderem Gastritis, Magengeschwüre und Krebs auslösen. Mithilfe bestimmter Rezeptoren bindet es an die Epithelzellen der Magenschleimhaut.


Helicobacter pylori. Bild: R. Haas, Max von Pettenkofer-Institut

Wissenschaftler um Professor Rainer Haas vom Max von Pettenkofer-Institut der LMU haben nun bislang unbekannte Rezeptoren identifiziert, die an der Krankheitsentstehung direkt beteiligt sind. Ihre Ergebnisse veröffentlichen die Wissenschaftler in der neuen Ausgabe des Magazins Nature Microbiology.

Die chronische Infektion der Epithelzellen der Magenschleimhaut gilt als wichtiger Risikofaktor für Magenkrebs. Um die Mechanismen der Infektion besser zu verstehen, untersuchte Haas mit seinem Team, welche Rezeptoren an der Bindung zwischen Bakterium und Wirtszelle beteiligt sind.

„Dabei konnten wir neue Rezeptoren auf der Oberfläche der Epithelzellen identifizieren, die sogenannten CEACAMs“, sagt Haas. „Im Gegensatz zu den bisher bekannten Rezeptoren sind CEACAMs Glykoproteine, wobei die Zucker keine Rolle für die Bindung spielen. Sie stellen damit einen bislang unbekannten Rezeptortyp für H. pylori dar.“ Auf bakterieller Seite vermittelt das Protein HopQ die Bindung, wirkt also als Adhäsin, wie die Wissenschaftler nachweisen konnten.

Das Molekülpaar ist aber nicht nur für die Bindung der Bakterien an ihre Wirtszellen wichtig, sondern auch für die pathogene Wirkung der Bakterien: Krankheitsauslöser ist das bakterielle Protein CagA, das von besonders pathogenen H. pylori –Stämmen über einen nadelartigen Fortsatz in die Epithelzellen der Magenschleimhaut injiziert wird.

Dieses molekulare Injektionssystem wird erst durch die Bindung des bakteriellen Proteins an die Proteine der Epithelzellen in Gang gesetzt, wie die Wissenschaftler zeigen konnten. Haas geht davon aus, dass H. pylori die Funktion der Epithelzellen beeinflusst, indem es eine Signalkaskade in den Wirtszellen auslöst. Welcher Art diese Signale sind, will Haas in zukünftigen Projekten untersuchen.

Dabei hat er auch eine mögliche therapeutische Anwendung im Blick: „Spezifische Inhibitoren der HopQ-CEACAM-Interaktion könnten eine Infektion entweder komplett verhindern oder die CagA Injektion unterbinden“, sagt Haas. Bestätigt werden die Ergebnisse von Haas‘ Team durch unabhängige Forschungsarbeiten von Wissenschaftlern um Professor Markus Gerhard von der Technischen Universität München (TUM) und PD Dr. Bernhard B. Singer von der Universität Duisburg-Essen. Deren Publikation zu diesem Thema ist ebenfalls in der aktuellen Ausgabe von „Nature Microbiology“ erschienen.
Die Arbeit wurde von der Deutschen Forschungsgemeinschaft (DFG) und vom Deutschen Zentrum für Infektionsforschung (DZIF) unterstützt.
Nature Microbiology 2016

Publikation:
Helicobacter pylori exploits human CEACAMs via HopQ for adherence and translocation of CagA
Verena Königer, Lea Holsten, Ute Harrison, Benjamin Busch, Eva Loell, Qing Zhao, Daniel A. Bonsor, Alexandra Roth, Arnaud Kengmo-Tchoupa, Stella I. Smith, Susanna Mueller, Eric J. Sundberg, Wolfgang Zimmermann, Wolfgang Fischer, Christof R. Hauck and Rainer Haas
Nature Microbiology 2016
http://dx.doi.org/10.1038/nmicrobiol.2016.189

Kontakt:
Prof. Dr. Rainer Haas
Max von Pettenkofer-Institut
089-218072855/72856
Haas@mvp.uni-muenchen.de
http://www.mvp.uni-muenchen.de/forschung/bakteriologie/ag-haas-rainer/

Luise Dirscherl | Ludwig-Maximilians-Universität München

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics