Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein heißes Eisen bei der Suche nach dem Magnetsinn

26.04.2013
Jedes Jahr machen sich Millionen von Zugvögeln auf eine beschwerliche Reise und orientieren sich dabei unter anderem am Magnetfeld der Erde.

Nach wie vor ist ungeklärt (und auch umstritten), mit welchen Sinnesorganen Vögel die magnetische Information wahrnehmen. Wissenschaftler im Labor von David Keays am Wiener Forschungsinstitut für Molekulare Pathologie konnten das Forschungspuzzle soeben um einige wesentliche Teile ergänzen.


Zellen aus dem Innenohr der Taube. Der verwendete Farbstoff lässt Eisen in hellem Blau erstrahlen. Deutlich sichtbar sind die im Labor von David Keays entdeckten Eisenkügelchen, von denen je eines pro Zelle direkt unter den Sinneshaaren liegt. IMP

In ihrer Arbeit, die heute online von Current Biology veröffentlicht wurde, beschreiben die Forscher die Entdeckung von eisenhaltigen Kügelchen in bestimmten sensorischen Nervenzellen von Vögeln. Diese sogenannten Haarzellen gehören zu Sinnesorganen des Innenohrs und spielen sowohl beim Hören als auch bei der Wahrnehmung der Schwerkraft eine wesentliche Rolle. Als besonders bemerkenswert stufen die Forscher den Fund ein, dass jede Haarzelle genau ein derartiges Eisenkügelchen besitzt und dass es in jeder Zelle an derselben Stelle sitzt.

„Das ist wirklich sehr aufregend“, meint Mattias Lauwers, dem die Entdeckung gelungen ist. „Wir finden diese Eisenkügelchen bei allen untersuchten Vögeln, von der Taube bis zum Strauß, jedoch nicht beim Menschen.“ Erstaunlicherweise wurden die auffälligen eisenhaltigen Gebilde noch nie zuvor bemerkt, obwohl an dem Thema seit vielen Jahrzehnten geforscht wird.

Die neuen Forschungsergebnisse schließen an frühere Arbeiten des Labors von David Keays an. Erst im vergangenen Jahr konnte die Gruppe zeigen, dass eisenreiche Zellen im Vogelschnabel nicht, wie bisher vermutet, die gesuchten Magnetfeld-Sensoren sind, sondern schlicht Blutzellen. „Die nun gefundenen Zellen sind wesentlich plausiblere Kandidaten für die gesuchten Magnetsensoren, denn es handelt sich hier definitiv um Nervenzellen“, so David Keays. „Wir haben allerdings noch ein gutes Stück Forschungsarbeit vor uns, um den Magnetsinn wirklich zu verstehen. Wir wissen zum Beispiel noch nicht, was genau die Funktion der mysteriösen Eisenkügelchen ist. Möglicherweise sind sie die lang gesuchten Magnetrezeptoren. Es ist nur eine Frage der Zeit, bis wir es herausfinden.“

Die Arbeit "An Iron-Rich Organelle in the Cuticular Plate of Avian Hair Cells" (Lauwers et al.) wird am 25.4.2013 online im Wissenschaftsjournal Current Biology veröffentlicht.

Bildmaterial zur freien Verwendung in Zusammenhang mit dieser Aussendung auf der IMP-Website: http://www.imp.ac.at/pressefoto-magnetoreceptor

Über das IMP
Das Forschungsinstitut für Molekulare Pathologie betreibt in Wien biomedizinische Grundlagenforschung und wird dabei maßgeblich von Boehringer Ingelheim unterstützt. Mehr als 200 ForscherInnen aus über 30 Nationen widmen sich der Aufklärung grundlegender molekularer und zellulärer Vorgänge, um komplexe biologische Phänomene im Detail zu verstehen und Krankheitsmechanismen zu entschlüsseln.

Wissenschaftlicher Kontakt:
Dr. David Keays
Forschungsinstitut für Molekulare Pathologie
Tel.: +43 (1) 79730-3530
Mobil: +43 (0)699 19071544
e-mail: keays@imp.ac.at

Pressekontakt am IMP:
Dr. Heidemarie Hurtl
Communications Manager
Tel. +43 (1) 79730-3625
Mobil: +43 (0)664 8247910
e-mail: hurtl@imp.ac.at

Dr. Heidemarie Hurtl | idw
Weitere Informationen:
http://www.imp.ac.at
http://www.imp.ac.at/pressefoto-magnetoreceptor

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie