Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein „heißer“ Pilz liefert DNA-Bausteine für den „Nachbau“ zentraler Strukturen der Zellkernhülle

22.07.2011
Heidelberger Forscher entschlüsseln Genom des hitzeliebenden Eukaryonten Chaetomium thermophilum

Mit Hilfe von DNA-Bausteinen eines hitzeliebenden Pilzes, der zwischen 50 und 60 Grad Celsius optimal wächst, ist es Heidelberger Wissenschaftlern gelungen, zentrale Strukturen in der Hülle von Zellkernen für die Forschung im Reagenzglas nachzubilden.

Dabei handelt es sich um den Kernporenkomplex, der den Stoffaustausch zwischen dem Zellkern und seiner Umgebung durch die Kernhülle hindurch ermöglicht. Die Forscher der Universität Heidelberg und des Europäischen Laboratoriums für Molekularbiologie (EMBL) haben dazu das Genom des thermophilen Eukaryonten Chaetomium thermophilum sequenziert und daraus die Proteine isoliert, aus denen ein lange gesuchter Grundpfeiler der Kernpore zusammengebaut werden konnte. Die Forschungsergebnisse von Prof. Dr. Ed Hurt und Dr. Peer Bork wurden heute (22. Juli 2011) in „Cell“ veröffentlicht.

Eine der auffälligsten Entwicklungen in der Evolution der eukaryontischen Zelle war die Ausbildung der Kernhülle, die die Erbinformation des Zellkerns umschließt. Diese Hülle war aber gleichzeitig auch eine Barriere, die erst durchlässig für den Stoffaustausch zwischen dem Zellkern und dem Zytoplasma gemacht werden musste. Diese Aufgabe hat der Kernporenkomplex übernommen, der als Pfropfen in der Kernhülle wie ein Pförtner am Eingangstor einer großen Fabrikanlage den „Güterverkehr“ zwischen den Zellräumen vermittelt. Die Kernpore besteht aus rund 30 verschiedenen Einzelbausteinen, den Nukleoporinen oder Nups. Jedes dieser Nups hat die Fähigkeit, sich zu mehreren Kopien zusammenzulagern, so dass eine komplexe Nano-Maschine aus insgesamt 500 Untereinheiten entsteht.

Bisher war der Aufbau der Kernpore in ihrem inneren Strukturbereich weitgehend unverstanden – vor allem auch deswegen, weil sich der gesamte Komplex nicht außerhalb der Zelle für die Forschung nachbilden ließ. Das lag unter anderem daran, dass sich insbesondere die großen Kernporenbausteine im isolierten Zustand äußerst labil verhielten. Prof. Hurt und sein Team haben daher überlegt, Kernporenbausteine aus thermophilen Eukaryonten für biochemische Rekonstitutionen einzusetzen. Von hitzeliebenden Bakterien, die noch bei einer Temperatur von über 100 Grad Celsius wachsen können, war bekannt, dass ihre Proteine robuste Eigenschaften aufweisen. Auch im Reich der Eukaryonten gibt es solche Exoten. So ist Chaetomium thermophilum in der Lage, bei 50 bis 60 Grad abgestorbenes pflanzliches Material abzubauen; bei diesem Prozess können Spitzentemperaturen von bis zu 70 Grad entstehen.

Am Biochemie-Zentrum der Universität Heidelberg haben Prof. Hurt und sein Team die gesamte DNA-Sequenz des thermophilen Pilzes mit rund 28 Millionen DNA-Basen entschlüsselt. Dr. Bork und seine Arbeitsgruppe am Europäischen Laboratorium für Molekularbiologie übernahmen die Aufgabe, das sequenzierte Genom zu ordnen und die Gesamtheit aller hitzeliebenden Proteine in diesem Organismus, immerhin mehr als 7.000, zu identifizieren. Darunter waren auch die 30 gesuchten Bausteine für den Kernporenkomplex. Den Wissenschaftlern um Ed Hurt gelang es schließlich, ein zentrales Grundgerüst der Kernpore mit den entsprechenden Nups im Reagenzglas zusammenzubauen. Prof. Hurt und Dr. Bork sind zuversichtlich, dass ihre Forschungsergebnisse wesentlich dazu beitragen, dass Chaetomium thermophilum künftig als Modellorganismus für die Erforschung von komplexen molekularen Maschinen von Eukaryonten genutzt werden kann.

Informationen im Internet können unter
http://www.uni-heidelberg.de/zentral/bzh/hurt
abgerufen werden.
Originalveröffentlichung:
Amlacher, S., Sarges, P., Flemming, D., van Noort, V., Kunze, R., Devos, D.P., Arumugam, M., Bork, P. & Hurt, E.: Insight into Structure and Assembly of the Nuclear Pore Complex by Utilizing the Genome of a Eukaryotic Thermophile, Cell 146, 277-289, July 22, 2011, doi:10.1016/j.cell.2011.06.039
Kontakt:
Prof. Dr. Ed Hurt
Biochemie-Zentrum der Universität Heidelberg
Telefon (06221) 54-4173
ed.hurt@bzh.uni-heidelberg.de
Kommunikation und Marketing
Pressestelle, Telefon (06221) 54-2311
presse@rektorat.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw
Weitere Informationen:
http://www.uni-heidelberg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Geteiltes Denken ist doppeltes Denken
19.01.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht Neue CRISPR-Methode enthüllt Genregulation einzelner Zellen
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Verkehrsstau im Nichts

Konstanzer Physiker verbuchen neue Erfolge bei der Vermessung des Quanten-Vakuums

An der Universität Konstanz ist ein weiterer bedeutender Schritt hin zu einem völlig neuen experimentellen Zugang zur Quantenphysik gelungen. Das Team um Prof....

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: Textiler Hochwasserschutz erhöht Sicherheit

Wissenschaftler der TU Chemnitz präsentieren im Februar und März 2017 ein neues temporäres System zum Schutz gegen Hochwasser auf Baumessen in Chemnitz und Dresden

Auch die jüngsten Hochwasserereignisse zeigen, dass vielerorts das natürliche Rückhaltepotential von Uferbereichen schnell erschöpft ist und angrenzende...

Im Focus: Wie Darmbakterien krank machen

HZI-Forscher entschlüsseln Infektionsmechanismen von Yersinien und Immunantworten des Wirts

Yersinien verursachen schwere Darminfektionen. Um ihre Infektionsmechanismen besser zu verstehen, werden Studien mit dem Modellorganismus Yersinia...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Nachhaltige Wassernutzung in der Landwirtschaft Osteuropas und Zentralasiens

19.01.2017 | Veranstaltungen

Künftige Rohstoffexperten aus aller Welt in Freiberg zur Winterschule

18.01.2017 | Veranstaltungen

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Flashmob der Moleküle

19.01.2017 | Physik Astronomie

Tollwutviren zeigen Verschaltungen im gläsernen Gehirn

19.01.2017 | Medizin Gesundheit

Fraunhofer-Institute entwickeln zerstörungsfreie Qualitätsprüfung für Hybridgussbauteile

19.01.2017 | Verfahrenstechnologie