Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Eine heisse Spur zu neuen Medikamenten: Medizinische Wirkstoffe effizient identifizieren

24.02.2010
Die Suche nach neuen Medikamenten ist zeitaufwändig und teuer. Oft müssen hunderte von Substanzen auf ihre Bindungs-Affinität zu krankheitsrelevanten Molekülen getestet werden, um einen Wirkstoff zu identifizieren.

Biophysiker aus der Gruppe von Professor Dieter Braun, Ludwig-Maximilians-Universität (LMU) München und Excellenzcluster "Nanosystems Initiative Munich" (NIM), sowie von der LMU Spin-Off-Firma NanoTemper haben nun mit der "Microscale Thermophoresis" ein weltweit einmaliges Verfahren entwickelt, das potentielle Wirkstoffe deutlich schneller und zuverlässiger findet.

Die Methode beruht auf dem Phänomen, dass Moleküle in Flüssigkeit entlang eines Temperaturgefälles wandern, meist von warm zu kalt. Bindet das Molekül an eine andere Substanz, ändert sich seine Bewegung. So können nun erstmals unter natürlichen Bedingungen etwa krankheitsrelevante Moleküle im Blut getestet werden -. Bindet der Wirkstoff, so lässt sich dies über die molekulare Bewegung nachweisen. "Dies ist der erste Schritt hin zu einem neuen Medikament", so Braun. "Das neue Verfahren kann aber auch in der medizinischen Diagnostik, der Lebensmittelüberwachung und im Umweltschutz eingesetzt werden." (Angewandte Chemie online, 23. Februar 2010)

Die herkömmlichen Testverfahren zur Identifizierung potentieller Wirkstoffe funktionieren nur in künstlichen Pufferlösungen und erlauben so fast keine Aussage über die Bindungs-Affinität der Substanzen im Blut. Anders das neue Verfahren: Hiermit können derartige Analysen nun erstmals unter aussagekräftigen natürlichen Bedingungen erfolgen. Dazu wird Blut mit dem potentiellen Wirkstoff gemischt und ein winziger Tropfen der Flüssigkeit mit einer Glaskapillare aufgezogen. Der feine Strahl eines Infrarot-Lasers erwärmt die Blutprobe anschließend punktuell in der Mitte des Röhrchens, so dass nach außen abfallend ein Temperaturgradient entsteht. Weil die krankheitsrelevanten Moleküle mit einer fluoreszierenden Markierung versehen sind, lässt sich ihre Bewegung verfolgen.

Unmittelbar nach dem Erwärmen der Probe lässt sich anhand der Fluoreszenzänderung erkennen, ob sich die Moleküle in der Blutprobe mit Wirkstoff anders bewegen als in einem Kontrollversuch ohne Wirkstoff. Ist dies der Fall, dann hat die Testsubstanz an das Zielmolekül gebunden. Der Nachweis dieser Bindung ist der erste Schritt zu einem neuen Medikament. "Unsere Methode bringt aber nicht nur die Wirkstoffforschung voran", sagt Braun. "Sie kann genauso in der medizinischen Diagnostik, der Lebensmittelüberwachung und im Umweltschutz eingesetzt werden. Denkbar ist zum einen der direkte Nachweis von Immunerkrankungen und Infektionen aber auch der schnelle Nachweis von Antibiotika in Milch oder aber von Giftstoffen im Wasser." (NIM/suwe)

Publikation:
"Quantifizierung der Puffer-Abhängigkeit von Aptamer-Bindungsreaktionen mit optischer Thermophorese"
Philipp Baaske, Christoph J. Wienken, Philipp Reineck, Stefan Duhr und Dieter Braun

Angewandte Chemie online, 23. Februar 2010

Ansprechpartner:
Prof. Dr. Dieter Braun
Systems Biophysics, Functional Nanosystems
Ludwig-Maximilians-Universität München
Tel.: 089 / 2180 - 2317
E-Mail: dieter.braun@lmu.de
Web: www.biosystems.physik.lmu.de/
Philipp Baaske
NanoTemper Technologies GmbH
Tel.: 089 / 2180 - 2833
E-Mail: philipp.baaske@nanotemper.de

Luise Dirscherl | idw
Weitere Informationen:
http://www.biosystems.physik.lmu.de/
http://www.nanotemper.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht In Hochleistungs-Mais sind mehr Gene aktiv
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Warum es für Pflanzen gut sein kann auf Sex zu verzichten
19.01.2018 | Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

• Prototypen-Test im Lufthansa FlyingLab
• LYRA Connect ist eine von drei ausgewählten Innovationen
• Bessere Kommunikation zwischen Kabinencrew und Passagieren

Die Zukunft des Fliegens beginnt jetzt: Mehrere Monate haben die Finalisten des Mode- und Technologiewettbewerbs „Telekom Fashion Fusion & Lufthansa FlyingLab“...

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Kongress Meditation und Wissenschaft

19.01.2018 | Veranstaltungen

LED Produktentwicklung – Leuchten mit aktuellem Wissen

18.01.2018 | Veranstaltungen

6. Technologie- und Anwendungsdialog am 18. Januar 2018 an der TH Wildau: „Intelligente Logistik“

18.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rittal vereinbart mit dem Betriebsrat von RWG Sozialplan - Zukunftsorientierter Dialog führt zur Einigkeit

19.01.2018 | Unternehmensmeldung

Open Science auf offener See

19.01.2018 | Geowissenschaften

Original bleibt Original - Neues Produktschutzverfahren für KFZ-Kennzeichenschilder

19.01.2018 | Informationstechnologie