Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Heilung großer Knochendefekte: Rostocker Forscher auf der Suche nach neuartigen Bio-Implantaten

20.12.2010
Wissenschaftler der Universität Rostock verfolgen neue, innovative Wege, die zur vollständigen Heilung großer knöcherner Gewebedefekte führen sollen. „3D-Geweberegeneration“ heißt das vom Wirtschaftsministerium Mecklenburg-Vorpommerns und der Europäischen Union mit 5,5 Millionen Euro geförderte Verbundprojekt, das von der DOT GmbH in Rostock koordiniert wird. Dabei geht es auch um neue Biomaterialien, die schneller wirksam sein sollen und dabei insbesondere die körpereigenen Heilungskräfte nutzen.

Die Herausforderung: der eigene Körper kann große Knochendefekte nicht mehr reparieren, die meist Folge von Tumoren, Unfällen, Infektionen oder Gelenkimplantatslockerungen sind. Diese Defekte werden derzeit durch Defekt-Implantate aufgefüllt, deren Lebensdauer begrenzt sein kann bzw. sich unzureichend mit dem verbliebenen Knochen verbinden.

Forscher der Orthopädischen Universitätsklinik und dem Bereich Zellbiologie der Universität Rostock arbeiten daran, das Verhalten von Knochenzellen und Knochengewebe unter realitätsnahen Bedingungen, das heißt, in einer dreidimensionalen Umgebung, besser zu verstehen. Ziel ist es, dass große Defekte mit neuen Biomaterialien vollständig geschlossen werden können und dadurch ausheilen, dass diese Biomaterialien in wenigen Monaten in körpereigenes Gewebe umgebaut werden.

Die Fachwelt spricht von „Tissue Engineering“. Gemeint ist damit, dass neues Knochengewebe im Körper wachsen und das neue Gewebe - zum Beispiel auch metallische Gelenkimplantate - mit dem angrenzenden Knochenlager fest verbinden kann. Damit diese Verbindung zuverlässig über viele Jahre hält, muss unter anderem die Oberflächengestaltung von Implantaten so erfolgen, dass das Gewebewachstum auf der Oberfläche gefördert und das dann neu gewachsene Gewebe gut mit Blut und Nährstoffen versorgt wird.

Zellbiologin Dr. Barbara Nebe verweist auf den langen Forschungsweg von ersten Laborversuchen über Tierversuche bis hin zu den ersten klinischen Studien. „Darin stecken einige Jahre intensive Forschungsarbeit“, so Frau Dr. Nebe. Da es sehr schwierig, ist Zellen im Inneren von räumlichen Strukturen zu untersuchen, wurde eigens ein 3D-Stapel-Modell entwickelt, das in einen Zellkultur-Reaktor eingebettet ist. „Damit können grundlegende Fragen zum Verhalten von Zellen in 3D-Umgebungen untersucht werden“, erklärt Nebe.

Das große Ziel sind 3D-Implantate, also „mechanisch stabile Formkörper, mit denen man große Knochendefekte ausfüllen kann“, sagt Prof. Dr. Rainer Bader, Leiter des Forschungslabors der Orthopädischen Uni-Klinik Rostock. Er ist sowohl Mediziner als auch Ingenieur. Seine Forschung konzentriert sich darauf, dass diese 3D-Implantate von dem angrenzenden und dann wachsenden Knochengewebe durchdrungen werden und damit optimal einwachsen. „Für große Defekte gibt es bislang noch keine Lösungen“, weiß Bader.

Das Problem: Zellen müssen bis in die Tiefe des großen Implantates vordringen und auch dort neues Knochengewebe bilden. Bislang sei das Einwachsen der Zellen in die 3D-Implantate kompliziert und unzureichend erforscht. „Mit neuen Untersuchungstechniken soll nun das Zellwachstum analysiert und kontrolliert werden“, sagt Bader.

In dem Forschungs-Verbundprojekt arbeitet die Firma DOT GmbH Rostock eng mit dem Arbeitsbereich Zellbiologie im Biomedizinischen Forschungszentrum, der Orthopädischen Klinik, dem Institut für Biophysik, dem Institut für Gerätesysteme und Schaltungstechnik (alle Universität Rostock), dem Institut für Polymertechnologie (IPT), Wismar und dem Leibniz-Institut für Plasmaforschung und Technologie (INF) Greifswald zusammen.

Die Firma DOT beschäftigt sich mit der „Biologisierung“ von metallischen Implantaten. „Ist ein Gelenk untherapierbar verschlissen, wird es derzeit durch ein Implantatsystem bestehend aus Metall, Keramik und Kunststoff ersetzt“, sagt Dr. Dieter Klinkenberg von DOT. „Eine rein biologische Reparatur wäre besser, ist aber noch nicht möglich“, urteilt der Diplom Physiker. In dem Unternehmen werden dreidimensionale, variable und mechanisch belastbare Gewebegenerationsmaterialien zum Füllen von Knochendefekten entwickelt. Durch eine bioaktive Oberfläche von Implantaten soll ein schnelles und komplikationsfreies Einwachsen möglich sein. Um das eingesetzte Material sicher zu integrieren, muss es von knocheneigenen Zellen besiedelt und oder von den Zellen abgebaut und durch körpereigene Knochensubstanz ersetzt werden. So bildet sich dann fest anliegendes, haltendes Gewebe. Bislang ist für die stabile Integration von Implantaten im Knochen ein Zeitraum von ca. 15 Jahren typisch, eine mögliche Verlängerung auf 20 Jahre wäre ein echter Fortschritt.

„Wir gehen davon aus, dass international wettbewerbsfähige Medizinprodukte bei DOT entstehen, die dort hochwertige Arbeitsplätze schaffen“, sagt Ralf Svoboda, Referatsleiter Technologie im Schweriner Wirtschaftsministerium. „Es freut mich, dass das medizinische Fachwissen am Standort Rostock genutzt wird, um die Wettbewerbsfähigkeit des international agierenden Unternehmens DOT noch weiter zu verbessern“.

Kontakt:
Universität Rostock
Presse+Kommunikation
Dr. Ulrich Vetter
Telefon: +49 (0)381 498 1013
E-Mail: ulrich.vetter@uni-rostock.de

Medizinische Fakultät
Prof. Dr. Rainer Bader
Telefon: +49 (0)381 494 93 37
E-Mail: rainer.bader@med.uni-rostock.de

Dr. Ulrich Vetter | Universität Rostock
Weitere Informationen:
http://www.uni-rostock.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Sollbruchstellen im Rückgrat - Bioabbaubare Polymere durch chemische Gasphasenabscheidung
02.12.2016 | Gesellschaft Deutscher Chemiker e.V.

nachricht "Fingerabdruck" diffuser Protonen entschlüsselt
02.12.2016 | Universität Leipzig

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie