Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Heiliger Gral im Ohr aufgespürt

30.07.2012
Schallumwandlung: Göttinger Neurobiologen entdecken verantwortliches Protein
Treffen Schallwellen im Ohr auf eine Sinneszelle, werden sie dort durch spezialisierte Ionenkanäle, die sich öffnen und schließen, in elektrische Nervensignale umgewandelt. Wissenschaftler der Universität Göttingen haben nun ein Protein entdeckt, ohne dass sich diese Ionenkanäle nicht öffnen und schließen lassen. Damit könnte dieses Protein verantwortlich sein für die Fähigkeit zu hören. Die Untersuchungen fanden im Rahmen des Sonderforschungsbereichs „Molekulare Mechanismen Sensorischer Verarbeitung“ in der Abteilung Zelluläre Neurobiologie statt. Die Ergebnisse wurden in der renommierten Fachzeitschrift Nature Neuroscience veröffentlicht.

Die Wissenschaftler untersuchten am Beispiel der Fruchtfliege Drosophila melanogaster, die mit ihrer Antenne hört, wie die Schallumwandlung im Ohr funktioniert. An den Ionenkanälen sitzen winzige Federn, die Schwingungen durch Schallwellen direkt auf die Kanäle übertragen: Schwingt die Fliegenantenne im Schallfeld, öffnen und schließen sich die Ionenkanäle. Umgekehrt führt das Öffnen und Schließen der Kanäle wiederum dazu, dass sich die Antenne bewegt. Die Forscher nutzten die von den Kanälen verursachten Antennenbewegungen nun aus, um genetische Defekte in der Kanalfunktion aufzuspüren. Dabei stießen sie auf ein Protein, ohne dass sich die Kanäle nicht mehr öffneten und schlossen. Nach dem Wiedereinsetzen des Proteins funktionierten die Kanäle wieder, bei einer reduzierten Proteinmenge funktionierte nur ein Teil der Kanäle.

„Unsere Ergebnisse zeigen erstmals, dass der Verlust dieses Proteins gezielt den Feder-Kanal-Komplex in Hörzellen durchtrennt“, erläutert der Erstautor der Studie, Thomas Effertz. „Die molekulare Identifizierung dieses Komplexes gilt als heiliger Gral der Hörforschung, und jetzt haben wir diesen im Fliegenohr aufgespürt.“ Das Protein wird TRPN1 oder NompC genannt und kommt in den Hörsinneszellen von Insekten, Fliegen und Fröschen vor. Die Wissenschaftler vermuten, dass es sowohl die Feder als auch den entsprechenden Ionenkanal bildet. Um diese Annahme zu testen, wollen sie die Feder des TRPN1-Ionenkanals nun in weiteren Untersuchungen mit genetischen Tricks verändern und sie beispielsweise steifer und weicher machen.

Originalveröffentlichung: Thomas Effertz et al. Direct gating and mechanical integrity of Drosophila auditory transducers require TRPN1. Nature Neuroscience (2012). Doi: 10.1038/nn.3175.

Kontaktadresse:
Prof. Dr. Martin Göpfert
Georg-August-Universität Göttingen
Biologische Fakultät – Abteilung Zelluläre Neurobiologie
Julia-Lermontowa-Weg 3, 37077 Göttingen
Telefon (0551) 39-177955, E-Mail: mgoepfe@gwdg.de

Beate Hentschel | idw
Weitere Informationen:
http://www.uni-goettingen.de/de/114662.html

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Blattkäfer: Schon winzige Pestizid-Dosis beeinträchtigt Fortpflanzung
26.07.2017 | Universität Bielefeld

nachricht Akute myeloische Leukämie (AML): Neues Medikament steht kurz vor der Zulassung in Europa
26.07.2017 | Universitätsklinikum Ulm

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Navigationssystem der Hirnzellen entschlüsselt

Das menschliche Gehirn besteht aus etwa hundert Milliarden Nervenzellen. Informationen zwischen ihnen werden über ein komplexes Netzwerk aus Nervenfasern übermittelt. Verdrahtet werden die meisten dieser Verbindungen vor der Geburt nach einem genetischen Bauplan, also ohne dass äußere Einflüsse eine Rolle spielen. Mehr darüber, wie das Navigationssystem funktioniert, das die Axone beim Wachstum leitet, haben jetzt Forscher des Karlsruher Instituts für Technologie (KIT) herausgefunden. Das berichten sie im Fachmagazin eLife.

Die Gesamtlänge des Nervenfasernetzes im Gehirn beträgt etwa 500.000 Kilometer, mehr als die Entfernung zwischen Erde und Mond. Damit es beim Verdrahten der...

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Breitbandlichtquellen mit flüssigem Kern

Jenaer Forschern ist es gelungen breitbandiges Laserlicht im mittleren Infrarotbereich mit Hilfe von flüssigkeitsgefüllten optischen Fasern zu erzeugen. Mit den Fasern lieferten sie zudem experimentelle Beweise für eine neue Dynamik von Solitonen – zeitlich und spektral stabile Lichtwellen – die aufgrund der besonderen Eigenschaften des Flüssigkerns entsteht. Die Ergebnisse der Arbeiten publizierte das Jenaer Wissenschaftler-Team vom Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT), dem Fraunhofer-Insitut für Angewandte Optik und Feinmechanik, der Friedrich-Schiller-Universität Jena und des Helmholtz-Insituts im renommierten Fachblatt Nature Communications.

Aus einem ultraschnellen intensiven Laserpuls, den sie in die Faser einkoppeln, erzeugen die Wissenschaftler ein, für das menschliche Auge nicht sichtbares,...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

10. Uelzener Forum: Demografischer Wandel und Digitalisierung

26.07.2017 | Veranstaltungen

Clash of Realities 2017: Anmeldung jetzt möglich. Internationale Konferenz an der TH Köln

26.07.2017 | Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Robuste Computer für's Auto

26.07.2017 | Seminare Workshops

Läuft wie am Schnürchen!

26.07.2017 | Seminare Workshops

Leicht ist manchmal ganz schön schwer!

26.07.2017 | Seminare Workshops