Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Heiliger Gral im Ohr aufgespürt

30.07.2012
Schallumwandlung: Göttinger Neurobiologen entdecken verantwortliches Protein
Treffen Schallwellen im Ohr auf eine Sinneszelle, werden sie dort durch spezialisierte Ionenkanäle, die sich öffnen und schließen, in elektrische Nervensignale umgewandelt. Wissenschaftler der Universität Göttingen haben nun ein Protein entdeckt, ohne dass sich diese Ionenkanäle nicht öffnen und schließen lassen. Damit könnte dieses Protein verantwortlich sein für die Fähigkeit zu hören. Die Untersuchungen fanden im Rahmen des Sonderforschungsbereichs „Molekulare Mechanismen Sensorischer Verarbeitung“ in der Abteilung Zelluläre Neurobiologie statt. Die Ergebnisse wurden in der renommierten Fachzeitschrift Nature Neuroscience veröffentlicht.

Die Wissenschaftler untersuchten am Beispiel der Fruchtfliege Drosophila melanogaster, die mit ihrer Antenne hört, wie die Schallumwandlung im Ohr funktioniert. An den Ionenkanälen sitzen winzige Federn, die Schwingungen durch Schallwellen direkt auf die Kanäle übertragen: Schwingt die Fliegenantenne im Schallfeld, öffnen und schließen sich die Ionenkanäle. Umgekehrt führt das Öffnen und Schließen der Kanäle wiederum dazu, dass sich die Antenne bewegt. Die Forscher nutzten die von den Kanälen verursachten Antennenbewegungen nun aus, um genetische Defekte in der Kanalfunktion aufzuspüren. Dabei stießen sie auf ein Protein, ohne dass sich die Kanäle nicht mehr öffneten und schlossen. Nach dem Wiedereinsetzen des Proteins funktionierten die Kanäle wieder, bei einer reduzierten Proteinmenge funktionierte nur ein Teil der Kanäle.

„Unsere Ergebnisse zeigen erstmals, dass der Verlust dieses Proteins gezielt den Feder-Kanal-Komplex in Hörzellen durchtrennt“, erläutert der Erstautor der Studie, Thomas Effertz. „Die molekulare Identifizierung dieses Komplexes gilt als heiliger Gral der Hörforschung, und jetzt haben wir diesen im Fliegenohr aufgespürt.“ Das Protein wird TRPN1 oder NompC genannt und kommt in den Hörsinneszellen von Insekten, Fliegen und Fröschen vor. Die Wissenschaftler vermuten, dass es sowohl die Feder als auch den entsprechenden Ionenkanal bildet. Um diese Annahme zu testen, wollen sie die Feder des TRPN1-Ionenkanals nun in weiteren Untersuchungen mit genetischen Tricks verändern und sie beispielsweise steifer und weicher machen.

Originalveröffentlichung: Thomas Effertz et al. Direct gating and mechanical integrity of Drosophila auditory transducers require TRPN1. Nature Neuroscience (2012). Doi: 10.1038/nn.3175.

Kontaktadresse:
Prof. Dr. Martin Göpfert
Georg-August-Universität Göttingen
Biologische Fakultät – Abteilung Zelluläre Neurobiologie
Julia-Lermontowa-Weg 3, 37077 Göttingen
Telefon (0551) 39-177955, E-Mail: mgoepfe@gwdg.de

Beate Hentschel | idw
Weitere Informationen:
http://www.uni-goettingen.de/de/114662.html

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Verbesserte Kohlendioxid-Fixierung dank Mikrokompartiment
25.09.2017 | Max-Planck-Institut für Biochemie

nachricht Regenbogenfarben enthüllen Werdegang von Zellen
25.09.2017 | Technische Universität Dresden

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Legionellen? Nein danke!

25.09.2017 | Veranstaltungen

Posterblitz und neue Planeten

25.09.2017 | Veranstaltungen

Hochschule Karlsruhe richtet internationale Konferenz mit Schwerpunkt Informatik aus

25.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Legionellen? Nein danke!

25.09.2017 | Veranstaltungsnachrichten

Hochvolt-Lösungen für die nächste Fahrzeuggeneration!

25.09.2017 | Seminare Workshops

Seminar zum 3D-Drucken am Direct Manufacturing Center am

25.09.2017 | Seminare Workshops