Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Heidelberger Forscher schaffen dreidimensionales Modell eines Bakteriums

15.08.2013
Mit neuen Methoden der Elektronenmikroskopie entschlüsseln sie die Struktur von Gemmata obscuriglobus

Bestimmte Bakterien können komplexe Membranstrukturen ausbilden, die im Hinblick auf Komplexität und Dynamik denen von Eukaryoten ähneln – also Lebewesen, deren Zellen einen membran-ummantelten Zellkern besitzen.

Das haben Wissenschaftler der Universität Heidelberg und des Europäischen Laboratoriums für Molekularbiologie (EMBL) mit Hilfe neuer Methoden der Elektronenmikroskopie gezeigt. Dem Forscherteam ist es gelungen, den Aufbau des Bakteriums Gemmata obscuriglobus mit der Organisation seines Membransystems dreidimensional zu rekonstruieren. Ihre Untersuchungen belegen gleichzeitig, dass G. obscuriglobus keinen „echten“ Zellkern besitzt.

Trotz seiner Ausnahmestellung muss es also weiterhin der Gruppe der Bakterien und damit den sogenannten Prokaryoten zugeordnet werden. Die Forschungsergebnisse wurden im Fachjournal „PloS Biology“ veröffentlicht.

„Seit den Anfängen der Mikroskopie werden die Zellen von Lebewesen nach zwei Kategorien unterschieden“, erklärt Dr. Damien Devos, der am Centre for Organismal Studies (COS) der Universität Heidelberg forscht. Danach „verpacken“ Eukaryoten ihr Genmaterial, die DNA, in einem durch eine Membran abgeschlossenen Bereich, dem Kern. Prokaryoten dagegen, zu denen auch Bakterien zählen, verfügen über keinen derartigen Zellkern. Bereits vor einigen Jahren legten Untersuchungen mit neuartigen Möglichkeiten der zweidimensionalen Bildgebung nahe, dass das Genmaterial von G. obscuriglobus von einer doppelten Membran umgeben zu sein scheint – neben anderen Besonderheiten der Membranorganisation war dies eine Erkenntnis, die die Unterscheidung von Prokaryoten und Eukaryoten ins Wanken brachte.

„Die Möglichkeit, dass ein Bakterium eine dem Zellkern ähnelnde Struktur besitzen könnte, stellte eine Bedrohung dar für eine der zentralen Annahmen der Biologie, auf der zahlreiche weitere Analysen und Interpretationen basieren“, erklärt Damien Devos. Um die Besonderheiten der Membranstruktur von G. obscuriglobus genauer zu untersuchen, haben die Heidelberger Forscher das Bakterium in dünne Scheiben zerlegt und diese mit dem Elektronenmikroskop abgebildet. Auf den Scheiben wurden dann die Membranen nachgewiesen, über den Umfang des gesamten Bakteriums verfolgt und ihr Aufbau am Computer rekonstruiert. Auf diese Weise entstand ein virtuelles Modell von G. obscuriglobus. Damit konnten die Wissenschaftler die Membranorganisation im dreidimensionalen Raum nachvollziehen und auswerten, wie die Membranen innerhalb der Zelle aufgebaut sind.

Die Untersuchungen zeigen, dass die Membranen innerhalb von G. obscuriglobus lediglich ein Teil der inneren Membran sind, die in allen Bakterien vorhanden ist und dort das sogenannte Zytoplasma umgibt. „Dazu weist G. obscuriglobus weitere Charakteristika auf, die auch bei anderen Bakterien zu finden sind“, erklärt Damien Devos. Mit diesen Forschungsergebnissen muss nach den Worten des Wissenschaftlers die Annahme verworfen werden, dass ein bakterieller Zellkern existiert. „Der Zellaufbau und die Membranen von Gemmata obscuriglobus sind lediglich komplexer als die ‚klassischer‘ Bakterien. G. obscuriglobus bildet also keine neue eigene Gruppe von Organismen und kann auch nicht zu den Eukaryoten gezählt werden“, sagt Dr. Devos, der mit Rachel Santarella-Mellwig vom Europäischen Laboratorium für Molekularbiologie zusammengearbeitet hat.

Filmmaterial im Internet: http://www.bork.embl.de/~devos/project/apache/htdocs/plancto/g3d/

Weitere Informationen im Internet: http://www.cos.uni-heidelberg.de/index.php/j.wittbrodt/d.devos

Originalpublikation:
Santarella-Mellwig R, Pruggnaller S, Roos N, Mattaj IW, Devos DP (2013) Three-Dimensional Reconstruction of Bacteria with a Complex Endomembrane System. PLoS Biol 11(5): e1001565. doi:10.1371/journal.pbio.1001565
Kontakt:
Dr. Damien Devos
Centre for Organismal Studies (COS)
Telefon (06221) 54-6254
devos@cos.uni-heidelberg.de
Kommunikation und Marketing
Pressestelle, Telefon (06221) 54-2311
presse@rektorat.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw
Weitere Informationen:
http://www.uni-heidelberg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Forscher finden neue Ansätze gegen Wirkstoffresistenzen in der Tumortherapie
15.12.2017 | Universität Leipzig

nachricht Moos verdoppelte mehrmals sein Genom
15.12.2017 | Philipps-Universität Marburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Immunsystem - Blutplättchen können mehr als bislang bekannt

LMU-Mediziner zeigen eine wichtige Funktion von Blutplättchen auf: Sie bewegen sich aktiv und interagieren mit Erregern.

Die aktive Rolle von Blutplättchen bei der Immunabwehr wurde bislang unterschätzt: Sie übernehmen mehr Funktionen als bekannt war. Das zeigt eine Studie von...

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Nanostrukturen steuern Wärmetransport: Bayreuther Forscher entdecken Verfahren zur Wärmeregulierung

Der Forschergruppe von Prof. Dr. Markus Retsch an der Universität Bayreuth ist es erstmals gelungen, die von der Temperatur abhängige Wärmeleitfähigkeit mit Hilfe von polymeren Materialien präzise zu steuern. In der Zeitschrift Science Advances werden diese fortschrittlichen, zunächst für Laboruntersuchungen hergestellten Funktionsmaterialien beschrieben. Die hiermit gewonnenen Erkenntnisse sind von großer Relevanz für die Entwicklung neuer Konzepte zur Wärmedämmung.

Von Schmetterlingsflügeln zu neuen Funktionsmaterialien

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Call for Contributions: Tagung „Lehren und Lernen mit digitalen Medien“

15.12.2017 | Veranstaltungen

Die Stadt der Zukunft nachhaltig(er) gestalten: inter 3 stellt Projekte auf Konferenz vor

15.12.2017 | Veranstaltungen

Mit allen Sinnen! - Sensoren im Automobil

14.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Weltrekord: Jülicher Forscher simulieren Quantencomputer mit 46 Qubits

15.12.2017 | Informationstechnologie

Wackelpudding mit Gedächtnis – Verlaufsvorhersage für handelsübliche Lacke

15.12.2017 | Verfahrenstechnologie

Forscher vereinfachen Installation und Programmierung von Robotersystemen

15.12.2017 | Energie und Elektrotechnik