Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Heidelberger Forscher finden ein außergewöhnlich elastisches Protein

23.01.2015

Am Ursprung der molekularen Elastizität könnte ein sogenanntes Elastomer der Nesseltiere stehen

Ein außergewöhnlich elastisches Protein haben Wissenschaftler der Universität Heidelberg in einer der ältesten Tiergruppen der Welt, den mehr als 600 Millionen Jahre alten Nesseltieren, entdeckt. Es ist Teil des „Waffensystems“, mit dem die Cnidaria eine Art Harpune mit extrem hoher Geschwindigkeit aus ihrem Körper herausschleudern können.

Der Fund des bislang unbekannten Proteins beim Süßwasserpolypen Hydra weist darauf hin, dass der molekulare Mechanismus der Elastizität seinen Ursprung bei den Nesseltieren haben könnte und zum Abschuss einer tödlichen Waffe entstanden ist.

Da es in seiner Aminosäurensequenz große Ähnlichkeit mit dem Spidroin der Spinnenseide aufweist, haben die Forscher vom Centre for Organismal Studies diesem elastischen Protein den Namen Cnidoin gegeben. Die Forschungsergebnisse wurden in der Fachzeitschrift „BMC Biology“ veröffentlicht.

Elastische Proteine wurden im Laufe der Evolution in ganz unterschiedlichen Tierstämmen entwickelt und erfüllen oft hoch spezialisierte biologische Funktionen wie zum Beispiel das Elastin in den Lungenbläschen höherer Wirbeltiere, das Resilin in den Flügelgelenken von Insekten oder das Spidroin in den Fäden der Spinnenseide.

Sie verleihen den jeweiligen Geweben mechanische Eigenschaften, die weit über denen künstlicher Materialien liegen. Als gemeinsames Merkmal besitzen diese Proteine – sogenannte Elastomere – strukturell ungeordnete, sich wiederholende Proteinsequenzen, die bei Streckung des Moleküls Energie speichern, um diese nach Entlastung in Form einer Bewegung abgeben zu können.

Diese Bewegungen können rhythmisch wiederkehrend sein wie in unseren herznahen Blutgefäßen. Oder es handelt sich um einzelne, explosionsartige Bewegungen wie beim Sprung eines Grashüpfers.

Das Wissenschaftlerteam um Privatdozent Dr. Suat Özbek und Prof. Dr. Thomas Holstein vom Centre for Organismal Studies (COS) konnte mit seinen Untersuchungen am Süßwasserpolypen Hydra zeigen, dass das Cnidoin Teil des Cnidaria-Waffensystems – der Nesselkapseln – ist. Diese Organellen dienen Quallen, Korallen und Seeanemonen zum Beutefang und zur Abwehr von Feinden.

Bei ihrer Berührung wird innerhalb von Nanosekunden aus dem Innern einer solchen unter hohem Druck stehenden Kapsel ein Schlauch wie eine Harpune herausgeschleudert. Bei dem „Abschießen“ dieses Nesselfadens handelt es sich um einen der schnellsten im Tierreich bekannten Prozesse. An der Spitze mit einer Art Stilett versehen, werden durch den Nesselfaden Gifte injiziert, die den Angreifer oder das Beutetier innerhalb von Sekunden lähmen oder töten. „Das Cnidoin ist dabei Bestandteil der Kapselwand, die vor der Entladung und dem Abschuss der ,Harpune‘ elastisch gedehnt ist“, so Dr. Özbek.

Gemeinsam mit weiteren Forschern in Heidelberg und München haben die COS-Wissenschaftler die biomechanischen Eigenschaften des Cnidoins untersucht. Dazu wurden Kraftmessungen an Einzelmolekülen sowie Computersimulationen durchgeführt. Die besonderen Eigenschaften des elastischen Proteins sind wesentlich verantwortlich für die enorme Beschleunigung der „Harpunenspitze“, die während des Entladungsprozesses auftritt und nach Angaben von Dr. Özbek fünfmillionenfach so hoch ist wie die Erdbeschleunigung

. „Die Cnidoin-Eigenschaften sind vergleichbar mit denen anderer Elastomere. Das Cnidoin weist aber vermutlich durch starke Kreuzvernetzung zu einer dichten Kapselwandstruktur einen ungewöhnlich schnellen Rückstoß auf.“

Wie der Wissenschaftler betont, ist der molekulare Mechanismus der Elastizität im Tierreich mehrfach unabhängig voneinander entstanden. „Cnidoin ist allerdings das evolutiv älteste elastische Protein, das bisher beschrieben wurde“, so Suat Özbek. „Daher gehen wir davon aus, dass eben diese Elastizität ihren Ursprung bei den Cnidaria hat und sich hier als Teil des beschriebenen ,Waffensystems‘ entwickelt hat.“

An den Forschungsarbeiten waren Prof Dr. Wolfgang Petrich vom Kirchhoff-Instituts für Physik der Universität Heidelberg sowie Prof. Dr. Frauke Gräter vom Heidelberger Institut für Theoretische Studien (HITS) beteiligt. Außerdem hat daran der Physiker Dr. Martin Benoit von der Ludwig-Maximilians-Universität München mitgewirkt.

Originalpublikation:
A. Beckmann, S. Xiao, J.P. Müller, D. Mercadante, T. Nüchter, N. Kröger, F. Langhojer, W. Petrich, T.W. Holstein, M. Benoit, F. Gräter and S. Özbek: A Fast Recoiling Silk-like Elastomer Facilitates Nanosecond Nematocyst Discharge, BMC Biology.2015, 13:3 (16 January 2015), doi: 10.1186/s12915-014-0113-1

Kontakt:
Privatdozent Dr. Suat Özbek
Centre for Organismal Studies
Telefon (06221) 54-5638
suat.oezbek@cos.uni-heidelberg.de

Kommunikation und Marketing
Pressestelle, Telefon (06221) 54-2311
presse@rektorat.uni-heidelberg.de

Weitere Informationen:

http://www.cos.uni-heidelberg.de/index.php/s.Oezbek?l=_e

Marietta Fuhrmann-Koch | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen
20.09.2017 | Veterinärmedizinische Universität Wien

nachricht Molekulare Kraftmesser
20.09.2017 | Max-Planck-Institut für Biochemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Höher - schneller - weiter: Der Faktor Mensch in der Luftfahrt

20.09.2017 | Veranstaltungen

Wälder unter Druck: Internationale Tagung zur Rolle von Wäldern in der Landschaft an der Uni Halle

20.09.2017 | Veranstaltungen

7000 Teilnehmer erwartet: 69. Urologen-Kongress startet heute in Dresden

20.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Drohnen sehen auch im Dunkeln

20.09.2017 | Informationstechnologie

Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen

20.09.2017 | Biowissenschaften Chemie

Frühwarnsystem für gefährliche Gase: TUHH-Forscher erreichen Meilenstein

20.09.2017 | Energie und Elektrotechnik