Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Heidelberger Forscher finden ein außergewöhnlich elastisches Protein

23.01.2015

Am Ursprung der molekularen Elastizität könnte ein sogenanntes Elastomer der Nesseltiere stehen

Ein außergewöhnlich elastisches Protein haben Wissenschaftler der Universität Heidelberg in einer der ältesten Tiergruppen der Welt, den mehr als 600 Millionen Jahre alten Nesseltieren, entdeckt. Es ist Teil des „Waffensystems“, mit dem die Cnidaria eine Art Harpune mit extrem hoher Geschwindigkeit aus ihrem Körper herausschleudern können.

Der Fund des bislang unbekannten Proteins beim Süßwasserpolypen Hydra weist darauf hin, dass der molekulare Mechanismus der Elastizität seinen Ursprung bei den Nesseltieren haben könnte und zum Abschuss einer tödlichen Waffe entstanden ist.

Da es in seiner Aminosäurensequenz große Ähnlichkeit mit dem Spidroin der Spinnenseide aufweist, haben die Forscher vom Centre for Organismal Studies diesem elastischen Protein den Namen Cnidoin gegeben. Die Forschungsergebnisse wurden in der Fachzeitschrift „BMC Biology“ veröffentlicht.

Elastische Proteine wurden im Laufe der Evolution in ganz unterschiedlichen Tierstämmen entwickelt und erfüllen oft hoch spezialisierte biologische Funktionen wie zum Beispiel das Elastin in den Lungenbläschen höherer Wirbeltiere, das Resilin in den Flügelgelenken von Insekten oder das Spidroin in den Fäden der Spinnenseide.

Sie verleihen den jeweiligen Geweben mechanische Eigenschaften, die weit über denen künstlicher Materialien liegen. Als gemeinsames Merkmal besitzen diese Proteine – sogenannte Elastomere – strukturell ungeordnete, sich wiederholende Proteinsequenzen, die bei Streckung des Moleküls Energie speichern, um diese nach Entlastung in Form einer Bewegung abgeben zu können.

Diese Bewegungen können rhythmisch wiederkehrend sein wie in unseren herznahen Blutgefäßen. Oder es handelt sich um einzelne, explosionsartige Bewegungen wie beim Sprung eines Grashüpfers.

Das Wissenschaftlerteam um Privatdozent Dr. Suat Özbek und Prof. Dr. Thomas Holstein vom Centre for Organismal Studies (COS) konnte mit seinen Untersuchungen am Süßwasserpolypen Hydra zeigen, dass das Cnidoin Teil des Cnidaria-Waffensystems – der Nesselkapseln – ist. Diese Organellen dienen Quallen, Korallen und Seeanemonen zum Beutefang und zur Abwehr von Feinden.

Bei ihrer Berührung wird innerhalb von Nanosekunden aus dem Innern einer solchen unter hohem Druck stehenden Kapsel ein Schlauch wie eine Harpune herausgeschleudert. Bei dem „Abschießen“ dieses Nesselfadens handelt es sich um einen der schnellsten im Tierreich bekannten Prozesse. An der Spitze mit einer Art Stilett versehen, werden durch den Nesselfaden Gifte injiziert, die den Angreifer oder das Beutetier innerhalb von Sekunden lähmen oder töten. „Das Cnidoin ist dabei Bestandteil der Kapselwand, die vor der Entladung und dem Abschuss der ,Harpune‘ elastisch gedehnt ist“, so Dr. Özbek.

Gemeinsam mit weiteren Forschern in Heidelberg und München haben die COS-Wissenschaftler die biomechanischen Eigenschaften des Cnidoins untersucht. Dazu wurden Kraftmessungen an Einzelmolekülen sowie Computersimulationen durchgeführt. Die besonderen Eigenschaften des elastischen Proteins sind wesentlich verantwortlich für die enorme Beschleunigung der „Harpunenspitze“, die während des Entladungsprozesses auftritt und nach Angaben von Dr. Özbek fünfmillionenfach so hoch ist wie die Erdbeschleunigung

. „Die Cnidoin-Eigenschaften sind vergleichbar mit denen anderer Elastomere. Das Cnidoin weist aber vermutlich durch starke Kreuzvernetzung zu einer dichten Kapselwandstruktur einen ungewöhnlich schnellen Rückstoß auf.“

Wie der Wissenschaftler betont, ist der molekulare Mechanismus der Elastizität im Tierreich mehrfach unabhängig voneinander entstanden. „Cnidoin ist allerdings das evolutiv älteste elastische Protein, das bisher beschrieben wurde“, so Suat Özbek. „Daher gehen wir davon aus, dass eben diese Elastizität ihren Ursprung bei den Cnidaria hat und sich hier als Teil des beschriebenen ,Waffensystems‘ entwickelt hat.“

An den Forschungsarbeiten waren Prof Dr. Wolfgang Petrich vom Kirchhoff-Instituts für Physik der Universität Heidelberg sowie Prof. Dr. Frauke Gräter vom Heidelberger Institut für Theoretische Studien (HITS) beteiligt. Außerdem hat daran der Physiker Dr. Martin Benoit von der Ludwig-Maximilians-Universität München mitgewirkt.

Originalpublikation:
A. Beckmann, S. Xiao, J.P. Müller, D. Mercadante, T. Nüchter, N. Kröger, F. Langhojer, W. Petrich, T.W. Holstein, M. Benoit, F. Gräter and S. Özbek: A Fast Recoiling Silk-like Elastomer Facilitates Nanosecond Nematocyst Discharge, BMC Biology.2015, 13:3 (16 January 2015), doi: 10.1186/s12915-014-0113-1

Kontakt:
Privatdozent Dr. Suat Özbek
Centre for Organismal Studies
Telefon (06221) 54-5638
suat.oezbek@cos.uni-heidelberg.de

Kommunikation und Marketing
Pressestelle, Telefon (06221) 54-2311
presse@rektorat.uni-heidelberg.de

Weitere Informationen:

http://www.cos.uni-heidelberg.de/index.php/s.Oezbek?l=_e

Marietta Fuhrmann-Koch | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Der Evolutionsvorteil der Strandschnecke
28.03.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Mobile Goldfinger
28.03.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Von Agenten, Algorithmen und unbeliebten Wochentagen

28.03.2017 | Unternehmensmeldung

Hannover Messe: Elektrische Maschinen in neuen Dimensionen

28.03.2017 | HANNOVER MESSE

Dimethylfumarat – eine neue Behandlungsoption für Lymphome

28.03.2017 | Medizin Gesundheit