Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Hefeextrakt mit packender Wirkung – Neue Methode enthüllt Mechanismen der DNA-Organisation

20.05.2011
Im Elektronenmikroskop sieht die Anordnung der DNA im Zellkern aus wie eine Perlenkette: Das Erbgut liegt als Abfolge von Knäueln – sogenannten Nukleosomen – aus DNA und Histonproteinen vor, die durch Stücke freier DNA verbunden sind. Das Ablesen eines Gens erfordert Regionen freier DNA, daher gibt die Lage der Nukleosomen vor, welche Gene aktiv sind. Die strukturelle Verpackung der DNA beeinflusst somit alle grundlegenden Lebensvorgänge in der Zelle und steht stark im Fokus der Forschung.

Dr. Philipp Korber und seinem Doktoranden Christian Wippo vom Adolf-Butenandt-Institut der Ludwig-Maximilians-Universität (LMU) München ist nun in Zusammenarbeit mit der Gruppe von Professor Franklin Pugh (Pennsylvania State University, USA) ein entscheidender Durchbruch gelungen: Zum ersten Mal gelang es den Wissenschaftlern, in einem künstlichen Laborsystem die biochemischen Prozesse nachzustellen, die die DNA-Perlenkette für ein ganzes Genom erzeugen.

Dabei erhielten sie eine Nukleosomen-Verteilung, die derjenigen lebender Zellen entspricht – und zwar ohne dass lebende Zellen beteiligt waren. Zugleich zeigte sich, dass gängige Thesen zur DNA-Organisation wohl nicht zutreffen. „Das ist ein wirklicher Meilenstein, da wir nun erstmals die genomweiten Mechanismen der Nukleosomen-Positionierung biochemisch untersuchen können – also unter frei variablen und kontrollierten Bedingungen, wie es in lebenden Zellen nicht möglich wäre“, freut sich Korber. (Science, 20. Mai 2011)

Das fadenförmige Erbmolekül DNA liegt im Zellkern gut verpackt vor: Ähnlich wie Haare auf einen Lockenwickler wird die DNA stückweise auf Histonproteine aufgewickelt, wodurch Nukleosomen entstehen, die durch unverpackte DNA-Bereiche verbunden sind. Da Nukleosomen das Ablesen der Gene behindern, reguliert diese dreidimensionale Organisation der DNA auch, welche Gene aktiv sind und beispielsweise in Proteine übersetzt werden können. „Seit sechs Jahren wird genomweit kartiert, wo genau sich Nukleosomen relativ zur DNA-Sequenz befinden“, erklärt Korber. Dabei zeigte sich, dass Nukleosomen keineswegs zufällig verteilt sind, sondern im Gegenteil größtenteils klar definierte Positionen einnehmen. Zu verstehen, was die Nukleosomen an Ort und Stelle platziert, ist von fundamentaler Bedeutung für alle DNA-abhängigen Prozesse, denn dieser wichtige Mechanismus reguliert den Zugriff auf die genomische Information. Einige Modelle zur Nukleosomenpositionierung wurden theoretisch entwickelt, konnten aber nicht ausreichend experimentell überprüft werden.

Von Bedeutung waren dabei vor allem drei Theorien: Erstens die These vom „genomischen Positionierungs-Code“, derzufolge strukturelle Eigenschaften der DNA, die durch die DNA-Sequenz selbst festgelegt werden, die Positionierung der Nukleosomen beeinflussen. Einer zweiten These zufolge verhalten sich Nukleosomen auf der DNA wie Waggons auf Schienen, die sich ganz passiv („statistisch“) anordnen, weil ab und zu Prellböcke („Barrieren“) aufgestellt sind. Als weitere Möglichkeit wird vermutet, dass das Ablesen der Gene – die Transkription – einen ordnenden Effekt hat und die Nukleosomen positioniert.

Diese Thesen an lebenden Zellen zu überprüfen, war bisher schlecht möglich. Die Nukleosomenorganisation ist so grundlegend für den Aufbau des Zellkerns, dass experimentelle Eingriffe sofort zu toten oder sterbenden Zellen führen und schwer einschätzbare sekundäre Effekte eintreten. In den Arbeitsgruppen von Korber und Pugh gelang nun der entscheidende Durchbruch: Die Wissenschaftler nutzten ein biochemisches In vitro-System, das gereinigte „nackte“ DNA in eine DNA mit Perlenkettenstruktur umbauen kann – und wenn zu diesem System auch Hefeextrakt zugegeben wurde, nahmen die nachgebauten Nukleosomen sogar dieselben Plätze ein wie in lebender Hefe. Der Hefeextrakt spielt dabei eine entscheidende Rolle, ohne ihn und das Energie spendende Molekül ATP gelang der originalgetreue Nachbau der DNA-Verpackung nicht. Das zeigt zum einen, dass neben DNA und Histonen zusätzliche Faktoren benötigt werden, um die Nukleosomen richtig zu positionieren, und zum anderen, dass es sich dabei um einen energieabhängigen – also aktiven – Prozess handelt.

Diese Beobachtungen widerlegen die These vom „Positionierungs-Code“ und sprechen auch gegen eine rein passive statistische Verteilung der Nukleosomen. Gegen das statistische Modell spricht auch ein weiteres Experiment der Wissenschaftler: „Da das neue System komplett zellfrei ist, können zum ersten Mal alle Parameter frei kontrolliert und variiert werden. So haben wir die Nukleosomendichte halbiert, was man mit lebenden Zellen unmöglich machen kann. Die Theorie der statistischen Positionierung, die auch wir bis dahin favorisiert hatten, fordert dann einen größeren Abstand zwischen den Nukleosomen – zu unserer eigenen Überraschung blieb der Abstand aber gleich. Irgendetwas im Hefeextrakt hält aktiv die Nukleosomen beieinander“, sagt Korber. Auch die Transkriptionsthese als letzte Theorie scheidet vermutlich aus, da das neue System die Transkription nicht beinhaltet. „Nachdem wir die gängigen Theorien infrage gestellt bzw. widerlegt haben, geht nun die Suche nach den entscheidenden Faktoren, die zur aktiven Packung der Nukleosomen führen, erst richtig los“, meint Korber.

Das neue System ist hierfür der entscheidende technische Fortschritt. „So komplexe Prozesse in zellfreien Systemen nachzubauen, ist alles andere als trivial“, erklärt Korber, „unser In vitro-System hebt die biochemische Forschung, also das Arbeiten mit Rekonstitutionen, auf eine neue Stufe, mit der wir ein grundlegendes Organisationsprinzip des Genoms besser verstehen und untersuchen können.“ (göd)

Die Untersuchung entstand im Rahmen des SFB "Transregio 5" (Chromatin: Assembly and Inheritance of Functional States) und wurde außerdem im Rahmen des Epigenom-Exzellenznetzwerks von der Europäischen Union gefördert.

Publikation:
„A packing mechanism for nucleosome organization reconstituted across a eukaryotic genome”;
Z.Zhang#, C.J. Wippo#, M. Wal, E. Ward, P. Korber*, B.F. Pugh*;
Science 20. Mai 2011
doi: 10.1126/science.1200508
#,* = gleichberechtigte Erst- bzw. Letztautoren
Ansprechpartner:
Dr. Philipp Korber
Adolf-Butenandt-Institut
Molekularbiologie
Tel.: 089 / 2180 - 75435
Fax: 089 / 2180 - 75425
E-Mail: philipp.korber@med.uni-muenchen.de

Luise Dirscherl | idw
Weitere Informationen:
http://www..uni-muenchen.de
http://www.molekularbiologie.abi.med.lmu.de/ueber_uns/korber/index.html

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Mikro-U-Boote für den Magen
24.01.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Echoortung - Lernen, den Raum zu hören
24.01.2017 | Ludwig-Maximilians-Universität München

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Forscher spinnen künstliche Seide aus Kuhmolke

Ein schwedisch-deutsches Forscherteam hat bei DESY einen zentralen Prozess für die künstliche Produktion von Seide entschlüsselt. Mit Hilfe von intensivem Röntgenlicht konnten die Wissenschaftler beobachten, wie sich kleine Proteinstückchen – sogenannte Fibrillen – zu einem Faden verhaken. Dabei zeigte sich, dass die längsten Proteinfibrillen überraschenderweise als Ausgangsmaterial schlechter geeignet sind als Proteinfibrillen minderer Qualität. Das Team um Dr. Christofer Lendel und Dr. Fredrik Lundell von der Königlich-Technischen Hochschule (KTH) Stockholm stellt seine Ergebnisse in den „Proceedings“ der US-Akademie der Wissenschaften vor.

Seide ist ein begehrtes Material mit vielen erstaunlichen Eigenschaften: Sie ist ultraleicht, belastbarer als manches Metall und kann extrem elastisch sein....

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Neuer Algorithmus in der Künstlichen Intelligenz

24.01.2017 | Veranstaltungen

Gehirn und Immunsystem beim Schlaganfall – Neueste Erkenntnisse zur Interaktion zweier Supersysteme

24.01.2017 | Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Im Interview mit Harald Holzer, Geschäftsführer der vitaliberty GmbH

24.01.2017 | Unternehmensmeldung

MAIUS-1 – erste Experimente mit ultrakalten Atomen im All

24.01.2017 | Physik Astronomie

European XFEL: Forscher können erste Vorschläge für Experimente einreichen

24.01.2017 | Physik Astronomie