Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Hefe im Dornröschenschlaf

09.12.2009
Max-Planck Forscher identifizieren Gene, die die Langlebigkeit von Hefezellen bei geringen Temperaturen begrenzen

Zellen altern umso schneller, je aktiver der Stoffwechsel ihres Organismus ist. Dabei entstehen freie Radikale, die Zellen schädigen. Wie diese jedoch das Altern beeinflussen, ist umstritten. Die Identifizierung von 93 Mutationen, die Hefezellen ein Überleben für mehrere Jahre bei vier Grad Celsius ermöglichen, bietet nun neue Einblicke in diesen Prozess (Aging, advanced online publication, 7. Dezember 2009).

Hefezellen sind ein begehrtes Modell der Alterungsforschung. Wie alle lebenden Organismen haben sie eine begrenzte Lebensdauer. Diese wird durch ihre Genetik, Stoffwechselrate und Umwelt beeinflusst. Gleichzeitig können Biologen sie im Labor leicht manipulieren, beispielsweise einzelne Gene ausschalten. Forscher um Markus Ralser des Max-Planck-Instituts für molekulare Genetik haben daher systematisch untersucht, ob das Überleben von Hefezellen bei vier Grad Celsius durch das Entfernen einzelner Gene verlängert werden kann. Dazu wurden 5.150 Hefestämme, denen jeweils ein Gen fehlt, nach Langzeit-Lagerung im Kühlraum beobachtet. Nach einem Jahr waren noch fast alle Hefe-Kolonien lebensfähig, nach insgesamt fünf Jahren jedoch nur noch ein Bruchteil. Anschließende Tests zeigten, dass den sehr widerstandsfähigen Hefezellen insgesamt 93 Gene fehlten. Diese spielen vor allem im grundlegenden Zellstoffwechsel eine Rolle.

Bei niedrigen Temperaturen überleben Hefezellen deutlich länger als bei höheren. So enthält eine Hefekultur bei 30 Grad Celsius für zwei bis vier Wochen lebende Zellen, bei vier Grad Celsius jedoch leben Hefestämme in der Regel ein Jahr und länger. Der Stoffwechselumsatz und die Wachstumsrate von Hefe sind bei niederen Temperaturen stark reduziert. Die Zellen "dämmern" wie in einem Dornröschenschlaf.

Im Zuge der Stoffwechselprozesse entstehen durch Zellatmung freie Radikale. Sie besitzen ein ungepaartes Elektron und reagieren daher extrem leicht mit anderen Molekülen. Bei geringer Stoffwechselrate werden durch diesen Prozess weniger freie Radikale freigesetzt als bei hoher. Bei niedrigen Temperaturen wie in der Berliner Langzeitstudie, sollte die Bildung von freien Rakdikalen durch den Stoffwechsel deshalb keine große Rolle spielen. Doch auch hier lebten Hefezellen mit dekfektem Primärstoffwechsel länger. "Ein hoher Stoffwechsel schädigt Zellen auch noch durch andere Mechanismen", sagt Ralser. "Anscheinend sind diese eher dafür verantwortlich, dass sich die Lebensspanne verkürzt." Welche dies genau sind, wissen die Wissenschaftler bisher jedoch noch nicht.

Die Forscher fanden heraus, dass die langlebigen Hefestämme in der Regel schlechter gegen oxidativen Stress geschützt sind als durchschnittliche Hefestämme. "Die ganze Anti-Oxidations-Maschinerie braucht unheimlich viel Energie. Diese Energie kann die Hefe aber natürlich über einen Zeitraum von fünf Jahren gut gebrauchen", sagt Ralser. "Zellen, die auf den teuren Schutz verzichten, haben somit einen Vorteil." Anscheinend ist Langlebigkeit nicht generell an die Fähigkeit gebunden ist, mit oxidativem Stress umzugehen.

Originalveröffentlichung:

Lucie Postma, Hans Lehrach und Markus Ralser
Surviving in the cold: yeast mutants with extended hibernating lifespan are oxidant sensitive

Aging, advanced online publication, 7. Dezember 2009, (http://www.impactaging.com)

Weitere Informationen erhalten Sie von:

Dr. Patricia Marquardt
Max-Planck-Institut für molekulare Genetik, Berlin
Tel.: +49 30 8413-1716
E-Mail: patricia.marquardt@molgen.mpg.de
Markus Ralser
Max-Planck-Institut für molekulare Genetik, Berlin
Tel.: +49 30 8413-1567
E-Mail: ralser@molgen.mpg.de

Barbara Abrell | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics