Hamburger Forschergruppe entwickelt neues Transistor-Konzept

Neues Transistor-Konzept. Dünne Filme aus Metall-Nanopartikeln (in grau) werden mithilfe von Gold-Elektroden elektrisch kontaktiert. Der Strom, der durch die Filme fließt (in blau) ist einstellbar durch die Spannung einer lokalen Elektrode, die sich unterhalb des Films befindet. Zur Charakterisierung werden nadelförmige Sonden auf die Bauelemente aufgebracht, die die entsprechenden Spannungen bereitstellen und den Strom messen. Foto: UHH/Klinke

Den Wissenschaftlerinnen und Wissenschaftlern ist es gelungen Transistoren herzustellen, die auf einem völlig neuen Prinzip beruhen: Statt Halbleitern verwenden sie Metall-Nanopartikel, die so klein sind, dass sie unter Stromfluss nicht mehr ihren metallischen Charakter zeigen, sondern eine Energie-Lücke aufweisen, die durch die Abstoßung der Elektronen untereinander hervorgerufen wird, was ihnen halbleiter-ähnliche Eigenschaften verleiht. Mit einer Kontrollspannung kann diese Lücke energetisch verschoben und damit der Stromfluss wie gewünscht an- und ausgeschaltet werden.

Diese Nano-Transistoren haben verschiedene Vorteile, die sie für kommerzielle Anwendungen interessant machen: Die chemische Herstellung der Metall-Nanopartikel ist sehr gut kontrollier- und skalierbar und stellt sehr kleine Nanopartikel zur Verfügung, die in Lösungsmitteln gelagert und einfach weiterverarbeitet werden können.

Im Gegensatz zu bisherigen, ähnlichen Ansätzen werden die Nanopartikel nicht als einzelne Strukturen verbaut, was die Herstellung sehr aufwändig und die Eigenschaften der entsprechenden Bauteile unzuverlässig macht, sondern als dünne Filme, die nur eine einzige Lage Nanopartikel aufweisen.

So werden die elektrischen Eigenschaften der Bauteile nicht nur einstellbar und nahezu identisch, sondern die Transistoren auch preiswerter. Darüber hinaus funktionieren sie nicht nur bei tiefen Temperaturen, sondern auch bei Raumtemperatur. Damit sind in Zukunft günstigere Transistoren und Computerchips bei gleichzeitig geringerem Stromverbrauch denkbar.

„Unsere Arbeit zeigt, dass es Alterativen zu den traditionellen Transistor-Konzepten gibt, die in Zukunft in verschiedenen speziellen Anwendungen zum Einsatz kommen können“, so Christian Klinke.

„Die von uns entwickelten Bauteile können aber nicht nur als Transistoren eingesetzt werden, auch als chemische Sensoren sind sie sehr interessant, da die Zwischenräume von Nanopartikel zu Nanopartikel hoch-sensibel auf chemische Ein- oder Anlagerungen reagieren. Die Anwendung als Transistoren und Sensoren eröffnet neue Forschungsperspektiven.“

Für Rückfragen

PD Dr. Christian Klinke
Institut für Physikalische Chemie
Universität Hamburg
Tel.: +49 40 42838-8210
E-Mail: christian.klinke@chemie.uni-hamburg.de

http://Link zum Artikel: http://advances.sciencemag.org/content/3/7/e1603191

Media Contact

Birgit Kruse idw - Informationsdienst Wissenschaft

Weitere Informationen:

http://www.uni-hamburg.de/

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Bakterien für klimaneutrale Chemikalien der Zukunft

For­schen­de an der ETH Zü­rich ha­ben Bak­te­ri­en im La­bor so her­an­ge­züch­tet, dass sie Me­tha­nol ef­fi­zi­ent ver­wer­ten kön­nen. Jetzt lässt sich der Stoff­wech­sel die­ser Bak­te­ri­en an­zap­fen, um wert­vol­le Pro­duk­te her­zu­stel­len, die…

Batterien: Heute die Materialien von morgen modellieren

Welche Faktoren bestimmen, wie schnell sich eine Batterie laden lässt? Dieser und weiteren Fragen gehen Forschende am Karlsruher Institut für Technologie (KIT) mit computergestützten Simulationen nach. Mikrostrukturmodelle tragen dazu bei,…

Porosität von Sedimentgestein mit Neutronen untersucht

Forschung am FRM II zu geologischen Lagerstätten. Dauerhafte unterirdische Lagerung von CO2 Poren so klein wie Bakterien Porenmessung mit Neutronen auf den Nanometer genau Ob Sedimentgesteine fossile Kohlenwasserstoffe speichern können…

Partner & Förderer