Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Halterung für den Propeller

13.04.2015

Freiburger Forscher zeigen, wie das Fortbewegungsorgan der einzelligen Archaeen an deren Oberfläche befestigt ist

Ein Forschungsteam um die Freiburger Biologin Prof. Dr. Sonja-Verena Albers hat die Struktur des Proteins beschrieben, mit dem bei Archaeen – einer einzelligen Lebensform – das Fortbewegungsorgan in der Zellwand verankert ist.


Archaeen sind einzellige Lebewesen ohne Zellkern – ebenso wie die weitaus besser erforschten Bakterien. Quelle: Sonja-Verena Albers

Außerdem haben die Forscherinnen und Forscher gezeigt, dass dieses Protein wesentlich für den Aufbau und die Funktionsweise des Organs ist. Das Team hat die Ergebnisse in der aktuellen Ausgabe der Fachzeitschrift „Structure“ veröffentlicht.

Prokaryoten, einzellige Lebewesen ohne Zellkern, werden in Bakterien und Archaeen unterteilt. Archaeen sind wesentlich weniger erforscht, da bisher noch keine krankheitserregenden Formen beschrieben wurden. Die ersten isolierten Archaeen stammten aus Lebensräumen wie heißen Schwefelquellen, heißen Quellen in der Tiefsee oder extrem salzhaltigen Seen.

Darum gingen Wissenschaftlerinnen und Wissenschaftler lange Zeit davon aus, dass Archaeen nur in solch extremen Umgebungen wachsen können. Inzwischen ist bekannt, dass Archaeen genau wie Bakterien in nahezu allen Habitaten vorkommen – beim Menschen unter anderem in der Darmflora und auf der Haut. Mit diesen Entdeckungen hat die Forschung neue Impulse erhalten.

Für Mikroorganismen ist es wichtig, sich aktiv bewegen zu können: Wenn sich ihre Lebensbedingungen verschlechtern, sind sie in der Lage, nach besseren zu suchen. Das Fortbewegungsorgan der Bakterien, das Flagellum, wird seit mehr als 30 Jahren im Detail studiert.

Es besteht aus bis zu 50 Proteinen, die nach einem festen Ablauf zusammengebaut werden. So entsteht eine Geißel aus Proteinfäden, die ähnlich funktioniert wie ein Propeller: Ein „Motor“ an ihrem in der Zellwand verankerten Ende lässt sie rotieren und ermöglicht eine Schwimmbewegung.

Bis vor wenigen Jahren galt, dass Archaeen ebenfalls Flagellen nutzen, um sich fortzubewegen. Mit der Sequenzierung der ersten archaealen Genome zeigten Wissenschaftler jedoch deutliche Unterschiede in den Strukturen der Fortbewegungsorgane von Bakterien und Archaeen auf. Letztere benutzen demnach zum Schwimmen eine Struktur namens Archaellum. Sie besteht im Modellorganismus Sulfolobus acidocaldarius aus nur sieben Untereinheiten, leistet aber trotz dieses einfachen Aufbaus ebenso viel wie das Flagellum.

Strukturelle Untersuchungen der Untereinheiten, aus denen das Archaellum besteht, sind bislang noch selten. Das Team um Albers hat vor zwei Jahren die Struktur des Motorproteins FlaI aufgedeckt und gezeigt, dass es mit den Proteinen FlaX und FlaH den Motorkomplex des Archaellums formt.

In dem nun erscheinenden Artikel beschreiben die Forscher das Protein FlaF, das spezifisch an das einzige Zellwandprotein des Modellorganismus bindet und es dort fest verankert. „Es ist wichtig, mehr über diese Zellwand- und Oberflächenstrukturen zu lernen, da die Archaeen über sie mit der Umwelt – und damit auch mit menschlichen Zellen – interagieren können“, sagt Albers.

Sonja-Verena Albers hat eine Professur für Mikrobiologie am Institut für Biologie II der Universität Freiburg inne. An den Arbeiten waren außerdem Wissenschaftler des Max-Planck-Instituts für terrestrische Mikrobiologie sowie Forschungsgruppen aus den USA beteiligt.

Originalpublikation:
Ankan Banerjee, Chi-Lin Tsai, Paushali Chaudhury, Patrick Tripp, Andrew S. Arvai, Justin P. Ishida, John A. Tainer, Sonja-Verena Albers: FlaF Is a β-Sandwich Protein that Anchors the Archaellum in the Archaeal Cell Envelope by Binding the S-Layer Protein. Structure.
http://dx.doi.org/10.1016/j.str.2015.03.001

www.cell.com/structure/abstract/S0969-2126%2815%2900079-9

Kontakt:
Prof. Dr. Sonja-Verena Albers
Institut für Biologie II – Mikrobiologie
Albert-Ludwigs-Universität Freiburg
Tel.: 0761/203-2630
E-Mail: sonja.albers@biologie.uni-freiburg.de

Weitere Informationen:

http://www.pr.uni-freiburg.de/pm/2015/pm.2015-04-13.55

Rudolf-Werner Dreier | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Forscher finden neue Ansätze gegen Wirkstoffresistenzen in der Tumortherapie
15.12.2017 | Universität Leipzig

nachricht Moos verdoppelte mehrmals sein Genom
15.12.2017 | Philipps-Universität Marburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Immunsystem - Blutplättchen können mehr als bislang bekannt

LMU-Mediziner zeigen eine wichtige Funktion von Blutplättchen auf: Sie bewegen sich aktiv und interagieren mit Erregern.

Die aktive Rolle von Blutplättchen bei der Immunabwehr wurde bislang unterschätzt: Sie übernehmen mehr Funktionen als bekannt war. Das zeigt eine Studie von...

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Nanostrukturen steuern Wärmetransport: Bayreuther Forscher entdecken Verfahren zur Wärmeregulierung

Der Forschergruppe von Prof. Dr. Markus Retsch an der Universität Bayreuth ist es erstmals gelungen, die von der Temperatur abhängige Wärmeleitfähigkeit mit Hilfe von polymeren Materialien präzise zu steuern. In der Zeitschrift Science Advances werden diese fortschrittlichen, zunächst für Laboruntersuchungen hergestellten Funktionsmaterialien beschrieben. Die hiermit gewonnenen Erkenntnisse sind von großer Relevanz für die Entwicklung neuer Konzepte zur Wärmedämmung.

Von Schmetterlingsflügeln zu neuen Funktionsmaterialien

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Call for Contributions: Tagung „Lehren und Lernen mit digitalen Medien“

15.12.2017 | Veranstaltungen

Die Stadt der Zukunft nachhaltig(er) gestalten: inter 3 stellt Projekte auf Konferenz vor

15.12.2017 | Veranstaltungen

Mit allen Sinnen! - Sensoren im Automobil

14.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Weltrekord: Jülicher Forscher simulieren Quantencomputer mit 46 Qubits

15.12.2017 | Informationstechnologie

Wackelpudding mit Gedächtnis – Verlaufsvorhersage für handelsübliche Lacke

15.12.2017 | Verfahrenstechnologie

Forscher vereinfachen Installation und Programmierung von Robotersystemen

15.12.2017 | Energie und Elektrotechnik