Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Hallesche Biologen erklären erstmals Funktionsweise von Genom-Stabilisator

05.05.2009
Wenn Genome instabil werden, können Krankheiten wie Krebs entstehen. Daher ist es wichtig, Stabilitätsfaktoren zu kennen.

Einer Forschergruppe der Martin-Luther-Universität Halle-Wittenberg um den Biologen Professor Gunter Reuter ist es nun gelungen, Prozesse aufzuklären, die in Körperzellen ein Stilllegen mobiler Elemente kontrollieren.

Sie haben die Funktionsweise des DNMT2-Enzyms untersucht, das bisher ein Mysterium darstellte. Ihre Ergebnisse lassen sich jetzt im Fachmagazin "Nature Genetics" nachlesen.

"In einer Zelle finden sich bekanntlich alle Gene, die der Mensch besitzt. Allerdings muss in jeder Zelle genau das Gen aktiv werden, das an dieser Stelle zu diesem Zeitpunkt gebraucht wird", erläutert Gunter Reuter. "Alle anderen Gene müssen stillgehalten werden. Dafür sorgt unter anderem das DNMT2-Enzym, indem es eine Strukturveränderung der DNA hervorruft." Dass das Enzym tatsächlich die DNA-Modifizierung kontrolliert und welche Reaktionsfolge dabei abläuft, konnte Reuter mit seinem Team erstmals nachweisen und beschreiben.

Die halleschen Forscher machten sich dafür eine entscheidende Erkenntnis zunutze: Das DNMT2-Enzym ist evolutionär besonders hoch konserviert, und es gibt nur geringe Unterschiede zwischen dem Säugetier-Enzym und jenem der Drosophila (Taufliege). "In den Fliegen konnten wir das Enzym deaktivieren und anschließend Bereiche identifizieren, in denen normalerweise die Stilllegungen ablaufen. Wenn unter dem Mikroskop beispielsweise gefleckte Augen zu erkennen waren, wussten wir: In der Nähe passiert es."

Fällt die Reaktion zur Stilllegung aus, hat dies enorme Konsequenzen für die Stabilität des Genoms. "Mobile Elemente werden dann extrem aktiv, und es gehen zum Beispiel ganze Chromosomen verloren", sagt Olaf Nickel, Doktorand bei Gunter Reuter und Mit-Autor des Beitrags in "Nature Genetics". "Wir haben somit einen wichtigen Einblick in die molekularen Prozesse erhalten, die für die Stabilität der Genome höherer Organismen verantwortlich sind."

Es gebe noch andere Stilllegungsprozesse, erklärt Gunter Reuter, eine gegenseitige Kompensation sei möglich. "Diese Komplexität zu verstehen, ist entscheidend, weitere Schritte müssen dazu folgen." Mit seinen Kollegen will Reuter nun das menschliche DNMT2-Enzym künstlich an bestimmte Gene der Drosophila koppeln. "Die Frage lautet: Wird das entsprechende Gen stillgelegt?"

Die Rolle dieses wichtigen Enzyms bei unterschiedlichen zellulären Prozessen in verschiedenen Organismen wollen insgesamt sieben Wissenschaftler-Teams aus Deutschland und Israel analysieren, die sich zu einer Forschergruppe zusammengefunden haben. Sprecher der von der Deutschen Forschungsgemeinschaft geförderten Gruppe ist Prof. Dr. Wolfgang Nellen von der Universität Kassel.

Angaben zur Veröffentlichung:

Sameer Phalke, Olaf Nickel, Diana Walluschek, Frank Hortig, Maria Cristina Onorati und Gunter Reuter:

"Retrotransposon silencing and telomere integrity in somatic cells of Drosophila depends on the cytosine-5 methyltransferase DNMT2"

Nature Genetics, vorab online veröffentlicht am 3. Mai 2009
Digital Object Identifier: 10.1038/ng.360
Ansprechpartner:
Prof. Dr. Gunter Reuter
Leiter der Arbeitsgruppe Entwicklungsgenetik
Telefon: 0345 55 26300
E-Mail: gunter.reuter@genetik.uni-halle.de

Carsten Heckmann | idw
Weitere Informationen:
http://www.uni-halle.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie