Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Hallesche Biologen erklären erstmals Funktionsweise von Genom-Stabilisator

05.05.2009
Wenn Genome instabil werden, können Krankheiten wie Krebs entstehen. Daher ist es wichtig, Stabilitätsfaktoren zu kennen.

Einer Forschergruppe der Martin-Luther-Universität Halle-Wittenberg um den Biologen Professor Gunter Reuter ist es nun gelungen, Prozesse aufzuklären, die in Körperzellen ein Stilllegen mobiler Elemente kontrollieren.

Sie haben die Funktionsweise des DNMT2-Enzyms untersucht, das bisher ein Mysterium darstellte. Ihre Ergebnisse lassen sich jetzt im Fachmagazin "Nature Genetics" nachlesen.

"In einer Zelle finden sich bekanntlich alle Gene, die der Mensch besitzt. Allerdings muss in jeder Zelle genau das Gen aktiv werden, das an dieser Stelle zu diesem Zeitpunkt gebraucht wird", erläutert Gunter Reuter. "Alle anderen Gene müssen stillgehalten werden. Dafür sorgt unter anderem das DNMT2-Enzym, indem es eine Strukturveränderung der DNA hervorruft." Dass das Enzym tatsächlich die DNA-Modifizierung kontrolliert und welche Reaktionsfolge dabei abläuft, konnte Reuter mit seinem Team erstmals nachweisen und beschreiben.

Die halleschen Forscher machten sich dafür eine entscheidende Erkenntnis zunutze: Das DNMT2-Enzym ist evolutionär besonders hoch konserviert, und es gibt nur geringe Unterschiede zwischen dem Säugetier-Enzym und jenem der Drosophila (Taufliege). "In den Fliegen konnten wir das Enzym deaktivieren und anschließend Bereiche identifizieren, in denen normalerweise die Stilllegungen ablaufen. Wenn unter dem Mikroskop beispielsweise gefleckte Augen zu erkennen waren, wussten wir: In der Nähe passiert es."

Fällt die Reaktion zur Stilllegung aus, hat dies enorme Konsequenzen für die Stabilität des Genoms. "Mobile Elemente werden dann extrem aktiv, und es gehen zum Beispiel ganze Chromosomen verloren", sagt Olaf Nickel, Doktorand bei Gunter Reuter und Mit-Autor des Beitrags in "Nature Genetics". "Wir haben somit einen wichtigen Einblick in die molekularen Prozesse erhalten, die für die Stabilität der Genome höherer Organismen verantwortlich sind."

Es gebe noch andere Stilllegungsprozesse, erklärt Gunter Reuter, eine gegenseitige Kompensation sei möglich. "Diese Komplexität zu verstehen, ist entscheidend, weitere Schritte müssen dazu folgen." Mit seinen Kollegen will Reuter nun das menschliche DNMT2-Enzym künstlich an bestimmte Gene der Drosophila koppeln. "Die Frage lautet: Wird das entsprechende Gen stillgelegt?"

Die Rolle dieses wichtigen Enzyms bei unterschiedlichen zellulären Prozessen in verschiedenen Organismen wollen insgesamt sieben Wissenschaftler-Teams aus Deutschland und Israel analysieren, die sich zu einer Forschergruppe zusammengefunden haben. Sprecher der von der Deutschen Forschungsgemeinschaft geförderten Gruppe ist Prof. Dr. Wolfgang Nellen von der Universität Kassel.

Angaben zur Veröffentlichung:

Sameer Phalke, Olaf Nickel, Diana Walluschek, Frank Hortig, Maria Cristina Onorati und Gunter Reuter:

"Retrotransposon silencing and telomere integrity in somatic cells of Drosophila depends on the cytosine-5 methyltransferase DNMT2"

Nature Genetics, vorab online veröffentlicht am 3. Mai 2009
Digital Object Identifier: 10.1038/ng.360
Ansprechpartner:
Prof. Dr. Gunter Reuter
Leiter der Arbeitsgruppe Entwicklungsgenetik
Telefon: 0345 55 26300
E-Mail: gunter.reuter@genetik.uni-halle.de

Carsten Heckmann | idw
Weitere Informationen:
http://www.uni-halle.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Der Evolutionsvorteil der Strandschnecke
28.03.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Mobile Goldfinger
28.03.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hannover Messe: Elektrische Maschinen in neuen Dimensionen

28.03.2017 | HANNOVER MESSE

Dimethylfumarat – eine neue Behandlungsoption für Lymphome

28.03.2017 | Medizin Gesundheit

Antibiotikaresistenz zeigt sich durch Leuchten

28.03.2017 | Biowissenschaften Chemie