Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Haifisch-Antikörper inspirieren Optimierung menschlicher Antikörper: Lernen vom Haifisch

15.05.2014

Gentechnisch hergestellte Antikörper werden heutzutage erfolgreich in Krebsdiagnostik und -therapie eingesetzt. Auch gegen Alzheimer oder Multiple Sklerose werden bereits therapeutische Antikörper entwickelt.

Ein wichtiges Kriterium bei der Konstruktion geeigneter Antikörperfragmente ist ihre Stabilität. Beim Vergleich der Antikörper des evolutionsbiologisch sehr alten Haifischs mit denen des Menschen fand ein Wissenschaftlerteam der Technischen Universität München (TUM) und des Helmholtz Zentrums München Stabilisierungsmechanismen, die sich auch für maßgeschneiderte Antikörper zum Einsatz beim Menschen nutzen lassen.


Strukturelles Modell des IgNAR Hai-Antikörpers

Bild: Janosch Hennig, TUM/Helmholtz Zentrum

Maßgeschneiderte Antikörper gelten als aussichtsreiche Mittel gegen eine Vielzahl schwerer Krankheiten. Da sie präzise bestimmte Strukturen auf der Oberfläche von Viren, Bakterien oder Krebszellen erkennen können, werden sie bereits erfolgreich in Krebsdiagnostik und -therapie sowie gegen eine Vielzahl anderer Krankheiten eingesetzt. Bei allen Schritten, von der Produktion über die Lagerung bis hin zum therapeutischen Einsatz, ist die Stabilität der empfindlichen Antikörper ein entscheidender Faktor.

Neue Ansätze zur Stabilisierung von Antikörpern erhoffte sich ein Team um Dr. Matthias J. Feige sowie die Professoren Linda Hendershot vom St. Jude Children’s Research Hospital in Memphis (Tennessee, USA), Michael Sattler (Inhaber des Lehrstuhls für biomolekulare NMR Spektroskopie an der TU München und Institut für Strukturbiologie des Helmholtz Zentrums München), Michael Groll (Inhaber des Lehrstuhls für Biochemie an der TU München) und Johannes Buchner (Inhaber des Lehrstuhls für Biotechnologie an der TU München) vom Vergleich von Säugetier-Antikörpern mit denen von Haifischen.

Haifische gibt es bereits seit 500 Millionen Jahren. Sie gehören entwicklungsbiologisch zu den ältesten Tieren, die über ein „modernes“ Immunsystem ähnlich dem des Menschen verfügen. Damit der Hai im Salzwasser überleben kann, enthält sein Blut große Mengen an Harnstoff. Dieser schützt den Hai zwar vor Wasserverlust, kann aber gleichzeitig auch empfindliche Proteinmoleküle wie die Antikörper destabilisieren.

„Menschliche Antikörper würden unter diesen Bedingungen zusammenbrechen. Hai-Antikörper müssen also strukturelle Eigenschaften besitzen, die sie besonders widerstandsfähig machen“, sagt Matthias J. Feige, Erstautor der Publikation. „Dieses Geheimnis wollten wir lüften.“

Für ihre Untersuchungen wählten sie den Haifisch-Antikörper IgNAR (Immunoglobulin New Antigen Receptor). Da es bisher kaum strukturelle Informationen über das Molekül gab und es sich nicht in Gänze kristallisieren ließ, entwickelten sie in detektivischer Puzzlearbeit ein Modell des Antikörpers.

Sie kristallisierten Teilstücke und ermittelten deren atomaren Aufbau mittels Röntgenstrukturanalyse, verglichen Teilabschnitte mit bereits bekannten Strukturen anderer Immunglobuline. Die Strukturen anderer Teile des Antikörpers wurden mittels Kernmagnetresonanz-Spektroskopie gelöst. Wieder und wieder verglichen sie die ermittelten Strukturen und räumlichen Abstände mit den Ergebnissen von Röntgenstreumessungen an natürlichen Hai-Antikörpern und konnten so schließlich ein vollständiges Modell des Antikörpers aufbauen.

Die genauere Betrachtung der Struktur dieses Proteins zeigte, dass sich die für Antikörper typische Ig-Faltung offenbar schon vor mehr als 500 Millionen Jahren entwickelt hat, da sie auch beim Haifisch schon zu finden ist. Auch den Grund für die hohe Stabilität der Haifisch-Antikörper konnten die Forscher aufklären: Sie resultiert aus einer zusätzlichen Salzbrücke zwischen strukturell wichtigen Aminosäureketten sowie einem besonders großen unpolaren Kern der Ig-Faltung im Hai-Antikörper.

Den Forschern gelang es, beide Stabilisierungsprinzipen in menschliche Antikörper einzubauen. Tatsächlich führte die Kombination beider Prinzipien zu deutlich stabileren menschlichen Antikörperfragmenten. Ihr Schmelzpunkt lag zehn Grad höher als der des ursprünglichen Moleküls.

Auch in Säugetierzellen, in denen therapeutische Antikörper normalerweise produziert werden, zeigte die höhere Stabilität positive Effekte: Die veränderten Antikörper wurden in deutlich größerer Menge produziert. In naher Zukunft, so hoffen die Forscher, werden diese Erkenntnisse dazu beitragen, verbesserte therapeutische und diagnostische Antikörper aufbauen zu können. Sie sollten sich einfacher herstellen und besser lagern lassen sowie im menschlichen Organismus länger aktiv bleiben um ihr ganzes therapeutisches Potential entfalten zu können.

Die Arbeiten wurden unterstützt mit Mitteln des National Institutes of Health (NIH), der Deutschen Forschungsgemeinschaft (DFG), des Exzellenzclusters Center for Integrated Protein Science Munich (CIPSM), der Deutschen Akademie der Naturforscher Leopoldina, des St. Jude Children’s Research Hospital, der Peter und Traudl Engelhorn Stiftung, der Studienstiftung des Deutschen Volkes, der European Molecular Biology Organization (EMBO), des Swedish Research Council sowie des Boehringer Ingelheim Fonds. NMR-Messungen wurden am Bayerischen NMR Zentrum (BNMRZ) durchgeführt. Röntgenstrukturdaten wurden an der Synchrotron-Strahlungsquelle des Paul Scherrer Instituts (Villigen, Schweiz) ermittelt.

Publikation:

The structural analysis of shark IgNAR antibodies reveals evolutionary principles of immunoglobulins
Matthias J. Feige, Melissa A. Graewert, Moritz Marcinowski, Janosch Hennig, Julia Behnke, David Ausländerb, Eva M. Herold, Jirka Peschek, Caitlin D. Castro, Martin Flajnik, Linda M. Hendershot, Michael Sattler, Michael Groll, and Johannes Buchner
PNAS, Early Edition, http://www.pnas.org/cgi/doi/10.1073/pnas.1321502111
(voraussichtlich online am 15. Mai 2014)

Kontakt:

Prof. Dr. Johannes Buchner
Technische Universität München
Fakultät für Chemie, Lehrstuhl für Biotechnologie
Lichtenbergstraße 4, 85748 Garching, Germany
Tel.: +49 89 289 13341 – E-Mail: Johannes.Buchner@tum.de
Internet: http://www.chemie.tu-muenchen.de/biotech/index.html

Dr. Ulrich Marsch | Technische Universität München
Weitere Informationen:
http://www.tum.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zebras: Immer der Erinnerung nach
24.05.2017 | Senckenberg Forschungsinstitut und Naturmuseen

nachricht Wichtiges Regulator-Gen für die Bildung der Herzklappen entdeckt
24.05.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochspannung für den Teilchenbeschleuniger der Zukunft

24.05.2017 | Physik Astronomie

3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind

24.05.2017 | Physik Astronomie

Optisches Messverfahren für Zellanalysen in Echtzeit - Ulmer Physiker auf der Messe "Sensor+Test"

24.05.2017 | Messenachrichten