Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wir haben vier Gliedmaßen, weil wir einen Bauch haben

27.01.2014
Heute steht fest, dass alle Wirbeltiere, die über einen Kiefer verfügen, auch vier Flossen oder Gliedmaßen haben – ein Paar vorne und eines hinten.

Das war nicht immer so: Im Laufe der Evolution hat sich die Anordnung von Flossen, Flügeln, Armen und Beinen verändert. Trotzdem gaben sich bereits unsere frühesten Vorfahren mit der gleichbleibenden Anordnung von zwei Paar Gliedmaßen zufrieden: Warum? Weil wir einen Bauch haben!


Neuaugen- und Stör-Schlüpflinge sowie ein Mausembryo, aufgenommen mit Röntgenmikrotomographie.
Brian Metscher

Ein Forschungsteam der Universität Wien und des Konrad-Lorenz-Instituts stellt zu dieser Fragestellung eine neue Studie in der internationalen Zeitschrift "Evolution & Development" vor.

Wie bei vielen ungeklärten Fragen in der Evolutionsbiologie entstanden im Laufe der Zeit mehrere hypothetische Modelle, um den Ursprung der paarigen Gliedmaßen bei den Kiefermäulern – im Fachjargon Gnathostomata – zu erklären. Unter Kiefermäuler versteht man alle Tiere mit Rückgrat und Kiefer, sowohl die lebenden als auch die ausgestorbenen. "Ausgenommen davon sind jedoch Neunaugen und Schleimaale. Obwohl diese beiden Fischarten weder über Kiefer noch paarige Flossen verfügen, sind bei ihnen vom Rücken bis zum Schwanz entlang der Mittellinie Rückenflossen vorhanden", sagt Brian Metscher vom Department für Theoretische Biologie der Universität Wien. Jeder Erklärungsansatz, warum das so ist, muss nicht nur die fossilen Belege berücksichtigen, sondern auch die Feinheiten der frühen Entwicklung von Flossen und Gliedmaßen.

Gliedmaßen am Anfang und Ende der embryonalen Körperhöhle
"Wir haben uns für unsere Untersuchung auf zahlreiche Arbeiten der molekularen Embryologie sowie auf Forschungsergebnisse aus der Paläontologie und der klassischen Morphologie gestützt. Es ging uns darum, zu erklären, wieso der Wirbeltier-Embryo Gliedmaßen-Ansätze an jeder Seite bildet, und zwar jeweils ein Paar am Anfang und am Ende der Körperhöhle", erklärt Laura Nuño de la Rosa, Hauptautorin der Studie und Postdoktorandin am Konrad-Lorenz-Institut in Altenberg.
Embryo teilt sich in drei Zellschichten
Das neue Modell enthält frühere Forschungsergebnisse – beruhend auf Genexpression und der Interaktionen zwischen verschiedenen Geweben, aus denen sich ein Wirbeltierembryo entwickelt. In den ersten Wochen seiner Entwicklung trennt sich ein Embryo in drei Zellschichten: Das obere oder erste Keimblatt des Embryoblasten (Ektoderm) – die außen liegende Zellschicht, aus der Haut und Nervensystem entstehen, das innere Keimblatt (Endoderm), das später den Verdauungstrakt bildet, und das mittlere Keimblatt (Mesoderm), das für Muskeln, Knochen und andere Organe verantwortlich ist. Das frühe Mesoderm spaltet sich wiederum in zwei Schichten, wobei die eine Schicht das Innere der Körperhöhle abdichtet und die andere die Außenseite des Darms bildet.
Entwicklung des komplexen Verdauungstrakts verdrängt Gliedmaßen
"Wir konnten herausfinden, dass sich Flossen oder Gliedmaßen nur an jenen Stellen entwickeln, wo die beiden mesodermalen Schichten ausreichend voneinander getrennt sind und wo sie mit ektodermalen Gewebe interagieren können. Und das ist an den beiden Enden des Darms – beim Mund und beim After – der Fall. Dazwischen ist für die Entwicklung von Flossen oder Gliedmaßen kein Platz, denn die beiden mesodermalen Schichten verlaufen extrem dicht nebeneinander, da ist nur eine ganz schmale Trennungslinie vorhanden. Wir denken, dass diese beiden Schichten bei der Darm-Entwicklung sogar zusammenspielen", erklärt Brian Metscher, Theoretischer Biologe an der Universität Wien.

Nach dem hinteren Ende des Verdauungstraktes, der Analöffnung, treffen die mesodermalen Schichten beim Schwanzansatz zusammen, und dort, wo sich die Körperwand schließt, kann sich eine einzige mittlere Flosse bilden. Vorne in der Mitte, entlang des sich entwickelnden Darms kann sich die Körperwand nicht vollständig schließen. Deshalb entstehen gepaarte Ansätze für Flossen oder Gliedmaßen links und rechts der Mittellinie anstelle der mittleren Flosse. "Wir verfügen also über vier Gliedmaßen, weil wir einen Bauch haben", ist sich Postdoc Laura Nuño de la Rosa sicher.

Vorliegende Studie ist Modell für weitere Forschung
Die aktuell vorliegende Arbeit ist ein Beitrag zur laufenden Diskussion über die Entwicklung der verschiedenen embryonalen Schichten und Strukturen sowie über neue Ansätze in der Evolutionstheorie. Um Entwicklung und Evolution wirklich erfassen zu können, ist es wichtig, die embryonale Zellstrukturierung und die Wechselwirkungen der einzelnen Zellschichten zu verstehen – es genügt nicht, nur die Gene zu entschlüsseln. "Die wichtigste Funktion eines solchen Modells ist es, einen folgerichtigen Rahmen zu schaffen – für weitere spezifische, darauf aufbauende Hypothesen, die dann mit molekularen und anderen Labormethoden getestet werden können", sagt Brian Metscher abschließend.
Publikation:
Laura Nuño de la Rosa, Gerd B. Müller, Brian D. Metscher: The Lateral Mesodermal Divide: An Epigenetic Model of the Origin of Paired Fins. Evolution & Development, January 2014, 38-48.
DOI: 10.1111/ede.12061
http://onlinelibrary.wiley.com/doi/10.1111/ede.12061/full
Wissenschaftliche Kontakte (Anfragen in englischer Sprache):
Dr. Brian Metscher
Department für Theoretische Biologie
Universität Wien
1090 Wien, Althanstrasse 14
T +43-1-4277-567 04
brian.metscher@univie.ac.at
http://theoretical.univie.ac.at/people/metscher/
Laura Nuño de la Rosa García
Konrad Lorenz Institut
für Evolutions- und Kognitionsforschung
3400 Klosterneuburg, Martinstraße 12
T +43-2242-32390-12
laura.nuno@kli.ac.at
Rückfragehinweis
Mag. Veronika Schallhart
Pressebüro der Universität Wien
Forschung und Lehre
1010 Wien, Universitätsring 1
T +43-1-4277-175 30
M +43-664-602 77-175 30
veronika.schallhart@univie.ac.at
Weitere Informationen:
http://onlinelibrary.wiley.com/doi/10.1111/ede.12061/full

Alexandra Frey | Universität Wien
Weitere Informationen:
http://www.univie.ac.at

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Verteidigung um fast jeden Preis
14.12.2017 | Max-Planck-Institut für Evolutionsbiologie, Plön

nachricht Mitochondrien von Krebszellen im Visier
14.12.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanostrukturen steuern Wärmetransport: Bayreuther Forscher entdecken Verfahren zur Wärmeregulierung

Der Forschergruppe von Prof. Dr. Markus Retsch an der Universität Bayreuth ist es erstmals gelungen, die von der Temperatur abhängige Wärmeleitfähigkeit mit Hilfe von polymeren Materialien präzise zu steuern. In der Zeitschrift Science Advances werden diese fortschrittlichen, zunächst für Laboruntersuchungen hergestellten Funktionsmaterialien beschrieben. Die hiermit gewonnenen Erkenntnisse sind von großer Relevanz für die Entwicklung neuer Konzepte zur Wärmedämmung.

Von Schmetterlingsflügeln zu neuen Funktionsmaterialien

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Mit allen Sinnen! - Sensoren im Automobil

14.12.2017 | Veranstaltungen

Materialinnovationen 2018 – Werkstoff- und Materialforschungskonferenz des BMBF

13.12.2017 | Veranstaltungen

Innovativer Wasserbau im 21. Jahrhundert

13.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Was für IT-Manager jetzt wichtig ist

14.12.2017 | Unternehmensmeldung

30 Baufritz-Läufer beim 25. Erkheimer Nikolaus-Straßenlauf

14.12.2017 | Unternehmensmeldung

Mit allen Sinnen! - Sensoren im Automobil

14.12.2017 | Veranstaltungsnachrichten