Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Haben Nervenzellen wenig zu sagen, werden sie deutlicher

17.10.2013
Das Gehirn ist extrem wandlungsfähig – und doch auch konservativ.

Wissenschaftler des Max-Planck-Instituts für Neurobiologie in Martinsried bei München zeigten nun mit ihren Kollegen am Friedrich Miescher Institut in Basel und der Ruhr-Universität in Bochum, dass Nervenzellen im Gehirn ihre eigene Erregbarkeit so regeln, dass die Aktivität des Netzwerks möglichst konstant bleibt.


Auch wenn Nervenzellen im visuellen Cortex von ihrer Hauptinformationsquelle abgeschnitten werden, kehrt ihre Aktivität innerhalb von 48 Stunden auf ein ähnliches Niveau wie vor der Störung zurück. Unter dem Mikroskop

© MPI für Neurobiologie / Hübener

Das so erreichte mittlere Aktivitätsniveau ist eine Grundvoraussetzung für ein gesundes Gehirn und die Neuvernetzung von Nervenzellen – eine essentielle Fähigkeit zum Beispiel für die Regeneration nach Verletzungen im Gehirn oder den Sinnesorganen.

Nervenzellen kommunizieren in Form von elektrischen Signalen. Diese geben sie über spezielle Kontaktstellen, die Synapsen, an Nachbarzellen weiter. Soll eine neue Information verarbeitet werden, können die Zellen neue Synapsen zu ihren Nachbarzellen aufbauen oder bestehende Kontakte verstärken. Damit Vergessen möglich ist, sind diese Prozesse reversibel. Das Gehirn befindet sich somit ständig im Umbau, durch den einzelne Nervenzellen jedoch weder zu aktiv noch zu ruhig werden dürfen. Ein gleichbleibender Aktivitätslevel ist das Ziel, denn eine langfristige Übererregung der Nervenzellen kann zu Schäden im Gehirn führen. Auch zu wenig Aktivität ist nicht gut.

„Nur wenn die Zellen sozusagen “wach” sind, also ein Mindestmaß an Aktivität zeigen, können sie sich neu mit ihren Nachbarzellen vernetzen“, erklärt Mark Hübener, der Leiter der nun erschienenen Studie. Das internationale Forscherteam konnte nun erstmals zeigen, dass das Gehirn selbst massive Änderungen der Nervenzellaktivität innerhalb von zwei Tagen kompensiert und zu einem ähnlichen Aktivitätslevel wie vor der Änderung zurückkehren kann.

Bisher gaben nur Zellkulturen Hinweis auf diese erstaunliche Fähigkeit des Gehirns. Auch blieb unklar, auf welche Weise Nervenzellen ihre eigene Erregbarkeit in Relation zur Aktivität des gesamten Netzwerks regulieren können. Der Antwort auf diese Frage kommen die Wissenschaftler nun einen großen Schritt näher. In ihrer Studie untersuchten sie den visuellen Cortex kürzlich erblindeter Mäuse. Wie erwartet, aber bisher noch nie gezeigt, sank die Aktivität der Nervenzellen in diesem Bereich nicht auf Null, sondern nur auf die Hälfte des ursprünglichen Wertes.

„Allein das war ein erstaunliches Ergebnis, denn es zeigt, in welchem Ausmaß der visuelle Cortex auch Informationen aus anderen Hirnbereichen verarbeitet“, erklärt Tobias Bonhoeffer, der bereits seit vielen Jahren mit seiner Abteilung am Max-Planck-Institut für Neurobiologie die Vorgänge im visuellen Cortex erforscht. „Richtig spannend wurde es jedoch, als wir diesen Bereich über die nächsten Stunden und Tage weiterbeobachteten.“

Durch das Mikroskop konnten die Wissenschaftler sozusagen “live” beobachten, wie die Nervenzellen im visuellen Cortex wieder aktiv wurden. Bereits nach wenigen Stunden war deutlich zu erkennen, dass die Kontaktstellen der betroffenen Zellen zu Nachbarzellen zunehmend größer wurden. Werden Synapsen größer, dann werden sie auch stärker – Signale werden schneller und effektiver an andere Zellen weitergegeben. Durch diese Kontaktverstärkung kehrte die Aktivität des betroffenen Zellverbands nach 24 bis 48 Stunden zu seinem Ausgangswert zurück.

„Vereinfacht dargestellt hatten die Zellen durch den Wegfall des visuellen Inputs nicht mehr so viel zu sagen – doch wenn sie nun etwas sagten, dann taten sie es mit Nachdruck“, veranschaulicht Mark Hübener. Durch das gleichzeitige Verstärken aller Synapsen der betroffenen Nervenzellen können auch größere Ausreißer in der Nervenzellaktivität in erstaunlich kurzer Zeit wieder normalisiert werden. Das auf diese Weise erreichte relativ gleichbleibende Aktivitätsniveau ist eine essentielle Voraussetzung für ein gesundes, anpassungsfähiges Gehirn.

Originalveröffentlichung:
Tara Keck, Georg B. Keller, R. Irene Jacobsen, Ulf T. Eysel, Tobias Bonhoeffer, Mark Hübener
Synaptic scaling and homeostatic plasticity in the mouse visual cortex in vivo
Neuron, 16. Oktober 2013
Kontakt:
Dr. Stefanie Merker
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Neurobiologie, Martinsried
Tel.: 089 8578 - 3514
E-Mail: merker@neuro.mpg.de
www.neuro.mpg.de
Prof. Dr. Mark Hübener
Abteilung Synapsen – Schaltkreise – Plastizität
Max-Planck-Institut für Neurobiologie, Martinsried
Email: mark@neuro.mpg.de

Dr. Stefanie Merker | Max-Planck-Institut
Weitere Informationen:
http://www.neuro.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Kupferhydroxid-Nanopartikel schützen vor toxischen Sauerstoffradikalen im Zigarettenrauch
30.03.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nierentransplantationen: Weisse Blutzellen kontrollieren Virusvermehrung
30.03.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Atome rennen sehen - Phasenübergang live beobachtet

Ein Wimpernschlag ist unendlich lang dagegen – innerhalb von 350 Billiardsteln einer Sekunde arrangieren sich die Atome neu. Das renommierte Fachmagazin Nature berichtet in seiner aktuellen Ausgabe*: Wissenschaftler vom Center for Nanointegration (CENIDE) der Universität Duisburg-Essen (UDE) haben die Bewegungen eines eindimensionalen Materials erstmals live verfolgen können. Dazu arbeiteten sie mit Kollegen der Universität Paderborn zusammen. Die Forscher fanden heraus, dass die Beschleunigung der Atome jeden Porsche stehenlässt.

Egal wie klein sie sind, die uns im Alltag umgebenden Dinge sind dreidimensional: Salzkristalle, Pollen, Staub. Selbst Alufolie hat eine gewisse Dicke. Das...

Im Focus: Kleinstmagnete für zukünftige Datenspeicher

Ein internationales Forscherteam unter der Leitung von Chemikern der ETH Zürich hat eine neue Methode entwickelt, um eine Oberfläche mit einzelnen magnetisierbaren Atomen zu bestücken. Interessant ist dies insbesondere für die Entwicklung neuartiger winziger Datenträger.

Die Idee ist faszinierend: Auf kleinstem Platz könnten riesige Datenmengen gespeichert werden, wenn man für eine Informationseinheit (in der binären...

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Nierentransplantationen: Weisse Blutzellen kontrollieren Virusvermehrung

30.03.2017 | Biowissenschaften Chemie

Zuckerrübenschnitzel: der neue Rohstoff für Werkstoffe?

30.03.2017 | Materialwissenschaften

Integrating Light – Your Partner LZH: Das LZH auf der Hannover Messe 2017

30.03.2017 | HANNOVER MESSE