Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Haben Nervenzellen wenig zu sagen, werden sie deutlicher

17.10.2013
Das Gehirn ist extrem wandlungsfähig – und doch auch konservativ.

Wissenschaftler des Max-Planck-Instituts für Neurobiologie in Martinsried bei München zeigten nun mit ihren Kollegen am Friedrich Miescher Institut in Basel und der Ruhr-Universität in Bochum, dass Nervenzellen im Gehirn ihre eigene Erregbarkeit so regeln, dass die Aktivität des Netzwerks möglichst konstant bleibt.


Auch wenn Nervenzellen im visuellen Cortex von ihrer Hauptinformationsquelle abgeschnitten werden, kehrt ihre Aktivität innerhalb von 48 Stunden auf ein ähnliches Niveau wie vor der Störung zurück. Unter dem Mikroskop

© MPI für Neurobiologie / Hübener

Das so erreichte mittlere Aktivitätsniveau ist eine Grundvoraussetzung für ein gesundes Gehirn und die Neuvernetzung von Nervenzellen – eine essentielle Fähigkeit zum Beispiel für die Regeneration nach Verletzungen im Gehirn oder den Sinnesorganen.

Nervenzellen kommunizieren in Form von elektrischen Signalen. Diese geben sie über spezielle Kontaktstellen, die Synapsen, an Nachbarzellen weiter. Soll eine neue Information verarbeitet werden, können die Zellen neue Synapsen zu ihren Nachbarzellen aufbauen oder bestehende Kontakte verstärken. Damit Vergessen möglich ist, sind diese Prozesse reversibel. Das Gehirn befindet sich somit ständig im Umbau, durch den einzelne Nervenzellen jedoch weder zu aktiv noch zu ruhig werden dürfen. Ein gleichbleibender Aktivitätslevel ist das Ziel, denn eine langfristige Übererregung der Nervenzellen kann zu Schäden im Gehirn führen. Auch zu wenig Aktivität ist nicht gut.

„Nur wenn die Zellen sozusagen “wach” sind, also ein Mindestmaß an Aktivität zeigen, können sie sich neu mit ihren Nachbarzellen vernetzen“, erklärt Mark Hübener, der Leiter der nun erschienenen Studie. Das internationale Forscherteam konnte nun erstmals zeigen, dass das Gehirn selbst massive Änderungen der Nervenzellaktivität innerhalb von zwei Tagen kompensiert und zu einem ähnlichen Aktivitätslevel wie vor der Änderung zurückkehren kann.

Bisher gaben nur Zellkulturen Hinweis auf diese erstaunliche Fähigkeit des Gehirns. Auch blieb unklar, auf welche Weise Nervenzellen ihre eigene Erregbarkeit in Relation zur Aktivität des gesamten Netzwerks regulieren können. Der Antwort auf diese Frage kommen die Wissenschaftler nun einen großen Schritt näher. In ihrer Studie untersuchten sie den visuellen Cortex kürzlich erblindeter Mäuse. Wie erwartet, aber bisher noch nie gezeigt, sank die Aktivität der Nervenzellen in diesem Bereich nicht auf Null, sondern nur auf die Hälfte des ursprünglichen Wertes.

„Allein das war ein erstaunliches Ergebnis, denn es zeigt, in welchem Ausmaß der visuelle Cortex auch Informationen aus anderen Hirnbereichen verarbeitet“, erklärt Tobias Bonhoeffer, der bereits seit vielen Jahren mit seiner Abteilung am Max-Planck-Institut für Neurobiologie die Vorgänge im visuellen Cortex erforscht. „Richtig spannend wurde es jedoch, als wir diesen Bereich über die nächsten Stunden und Tage weiterbeobachteten.“

Durch das Mikroskop konnten die Wissenschaftler sozusagen “live” beobachten, wie die Nervenzellen im visuellen Cortex wieder aktiv wurden. Bereits nach wenigen Stunden war deutlich zu erkennen, dass die Kontaktstellen der betroffenen Zellen zu Nachbarzellen zunehmend größer wurden. Werden Synapsen größer, dann werden sie auch stärker – Signale werden schneller und effektiver an andere Zellen weitergegeben. Durch diese Kontaktverstärkung kehrte die Aktivität des betroffenen Zellverbands nach 24 bis 48 Stunden zu seinem Ausgangswert zurück.

„Vereinfacht dargestellt hatten die Zellen durch den Wegfall des visuellen Inputs nicht mehr so viel zu sagen – doch wenn sie nun etwas sagten, dann taten sie es mit Nachdruck“, veranschaulicht Mark Hübener. Durch das gleichzeitige Verstärken aller Synapsen der betroffenen Nervenzellen können auch größere Ausreißer in der Nervenzellaktivität in erstaunlich kurzer Zeit wieder normalisiert werden. Das auf diese Weise erreichte relativ gleichbleibende Aktivitätsniveau ist eine essentielle Voraussetzung für ein gesundes, anpassungsfähiges Gehirn.

Originalveröffentlichung:
Tara Keck, Georg B. Keller, R. Irene Jacobsen, Ulf T. Eysel, Tobias Bonhoeffer, Mark Hübener
Synaptic scaling and homeostatic plasticity in the mouse visual cortex in vivo
Neuron, 16. Oktober 2013
Kontakt:
Dr. Stefanie Merker
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Neurobiologie, Martinsried
Tel.: 089 8578 - 3514
E-Mail: merker@neuro.mpg.de
www.neuro.mpg.de
Prof. Dr. Mark Hübener
Abteilung Synapsen – Schaltkreise – Plastizität
Max-Planck-Institut für Neurobiologie, Martinsried
Email: mark@neuro.mpg.de

Dr. Stefanie Merker | Max-Planck-Institut
Weitere Informationen:
http://www.neuro.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Blattkäfer: Schon winzige Pestizid-Dosis beeinträchtigt Fortpflanzung
26.07.2017 | Universität Bielefeld

nachricht Akute myeloische Leukämie (AML): Neues Medikament steht kurz vor der Zulassung in Europa
26.07.2017 | Universitätsklinikum Ulm

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Navigationssystem der Hirnzellen entschlüsselt

Das menschliche Gehirn besteht aus etwa hundert Milliarden Nervenzellen. Informationen zwischen ihnen werden über ein komplexes Netzwerk aus Nervenfasern übermittelt. Verdrahtet werden die meisten dieser Verbindungen vor der Geburt nach einem genetischen Bauplan, also ohne dass äußere Einflüsse eine Rolle spielen. Mehr darüber, wie das Navigationssystem funktioniert, das die Axone beim Wachstum leitet, haben jetzt Forscher des Karlsruher Instituts für Technologie (KIT) herausgefunden. Das berichten sie im Fachmagazin eLife.

Die Gesamtlänge des Nervenfasernetzes im Gehirn beträgt etwa 500.000 Kilometer, mehr als die Entfernung zwischen Erde und Mond. Damit es beim Verdrahten der...

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Breitbandlichtquellen mit flüssigem Kern

Jenaer Forschern ist es gelungen breitbandiges Laserlicht im mittleren Infrarotbereich mit Hilfe von flüssigkeitsgefüllten optischen Fasern zu erzeugen. Mit den Fasern lieferten sie zudem experimentelle Beweise für eine neue Dynamik von Solitonen – zeitlich und spektral stabile Lichtwellen – die aufgrund der besonderen Eigenschaften des Flüssigkerns entsteht. Die Ergebnisse der Arbeiten publizierte das Jenaer Wissenschaftler-Team vom Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT), dem Fraunhofer-Insitut für Angewandte Optik und Feinmechanik, der Friedrich-Schiller-Universität Jena und des Helmholtz-Insituts im renommierten Fachblatt Nature Communications.

Aus einem ultraschnellen intensiven Laserpuls, den sie in die Faser einkoppeln, erzeugen die Wissenschaftler ein, für das menschliche Auge nicht sichtbares,...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

10. Uelzener Forum: Demografischer Wandel und Digitalisierung

26.07.2017 | Veranstaltungen

Clash of Realities 2017: Anmeldung jetzt möglich. Internationale Konferenz an der TH Köln

26.07.2017 | Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Robuste Computer für's Auto

26.07.2017 | Seminare Workshops

Läuft wie am Schnürchen!

26.07.2017 | Seminare Workshops

Leicht ist manchmal ganz schön schwer!

26.07.2017 | Seminare Workshops