Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Haben Nervenzellen wenig zu sagen, werden sie deutlicher

17.10.2013
Das Gehirn ist extrem wandlungsfähig – und doch auch konservativ.

Wissenschaftler des Max-Planck-Instituts für Neurobiologie in Martinsried bei München zeigten nun mit ihren Kollegen am Friedrich Miescher Institut in Basel und der Ruhr-Universität in Bochum, dass Nervenzellen im Gehirn ihre eigene Erregbarkeit so regeln, dass die Aktivität des Netzwerks möglichst konstant bleibt.


Auch wenn Nervenzellen im visuellen Cortex von ihrer Hauptinformationsquelle abgeschnitten werden, kehrt ihre Aktivität innerhalb von 48 Stunden auf ein ähnliches Niveau wie vor der Störung zurück. Unter dem Mikroskop

© MPI für Neurobiologie / Hübener

Das so erreichte mittlere Aktivitätsniveau ist eine Grundvoraussetzung für ein gesundes Gehirn und die Neuvernetzung von Nervenzellen – eine essentielle Fähigkeit zum Beispiel für die Regeneration nach Verletzungen im Gehirn oder den Sinnesorganen.

Nervenzellen kommunizieren in Form von elektrischen Signalen. Diese geben sie über spezielle Kontaktstellen, die Synapsen, an Nachbarzellen weiter. Soll eine neue Information verarbeitet werden, können die Zellen neue Synapsen zu ihren Nachbarzellen aufbauen oder bestehende Kontakte verstärken. Damit Vergessen möglich ist, sind diese Prozesse reversibel. Das Gehirn befindet sich somit ständig im Umbau, durch den einzelne Nervenzellen jedoch weder zu aktiv noch zu ruhig werden dürfen. Ein gleichbleibender Aktivitätslevel ist das Ziel, denn eine langfristige Übererregung der Nervenzellen kann zu Schäden im Gehirn führen. Auch zu wenig Aktivität ist nicht gut.

„Nur wenn die Zellen sozusagen “wach” sind, also ein Mindestmaß an Aktivität zeigen, können sie sich neu mit ihren Nachbarzellen vernetzen“, erklärt Mark Hübener, der Leiter der nun erschienenen Studie. Das internationale Forscherteam konnte nun erstmals zeigen, dass das Gehirn selbst massive Änderungen der Nervenzellaktivität innerhalb von zwei Tagen kompensiert und zu einem ähnlichen Aktivitätslevel wie vor der Änderung zurückkehren kann.

Bisher gaben nur Zellkulturen Hinweis auf diese erstaunliche Fähigkeit des Gehirns. Auch blieb unklar, auf welche Weise Nervenzellen ihre eigene Erregbarkeit in Relation zur Aktivität des gesamten Netzwerks regulieren können. Der Antwort auf diese Frage kommen die Wissenschaftler nun einen großen Schritt näher. In ihrer Studie untersuchten sie den visuellen Cortex kürzlich erblindeter Mäuse. Wie erwartet, aber bisher noch nie gezeigt, sank die Aktivität der Nervenzellen in diesem Bereich nicht auf Null, sondern nur auf die Hälfte des ursprünglichen Wertes.

„Allein das war ein erstaunliches Ergebnis, denn es zeigt, in welchem Ausmaß der visuelle Cortex auch Informationen aus anderen Hirnbereichen verarbeitet“, erklärt Tobias Bonhoeffer, der bereits seit vielen Jahren mit seiner Abteilung am Max-Planck-Institut für Neurobiologie die Vorgänge im visuellen Cortex erforscht. „Richtig spannend wurde es jedoch, als wir diesen Bereich über die nächsten Stunden und Tage weiterbeobachteten.“

Durch das Mikroskop konnten die Wissenschaftler sozusagen “live” beobachten, wie die Nervenzellen im visuellen Cortex wieder aktiv wurden. Bereits nach wenigen Stunden war deutlich zu erkennen, dass die Kontaktstellen der betroffenen Zellen zu Nachbarzellen zunehmend größer wurden. Werden Synapsen größer, dann werden sie auch stärker – Signale werden schneller und effektiver an andere Zellen weitergegeben. Durch diese Kontaktverstärkung kehrte die Aktivität des betroffenen Zellverbands nach 24 bis 48 Stunden zu seinem Ausgangswert zurück.

„Vereinfacht dargestellt hatten die Zellen durch den Wegfall des visuellen Inputs nicht mehr so viel zu sagen – doch wenn sie nun etwas sagten, dann taten sie es mit Nachdruck“, veranschaulicht Mark Hübener. Durch das gleichzeitige Verstärken aller Synapsen der betroffenen Nervenzellen können auch größere Ausreißer in der Nervenzellaktivität in erstaunlich kurzer Zeit wieder normalisiert werden. Das auf diese Weise erreichte relativ gleichbleibende Aktivitätsniveau ist eine essentielle Voraussetzung für ein gesundes, anpassungsfähiges Gehirn.

Originalveröffentlichung:
Tara Keck, Georg B. Keller, R. Irene Jacobsen, Ulf T. Eysel, Tobias Bonhoeffer, Mark Hübener
Synaptic scaling and homeostatic plasticity in the mouse visual cortex in vivo
Neuron, 16. Oktober 2013
Kontakt:
Dr. Stefanie Merker
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Neurobiologie, Martinsried
Tel.: 089 8578 - 3514
E-Mail: merker@neuro.mpg.de
www.neuro.mpg.de
Prof. Dr. Mark Hübener
Abteilung Synapsen – Schaltkreise – Plastizität
Max-Planck-Institut für Neurobiologie, Martinsried
Email: mark@neuro.mpg.de

Dr. Stefanie Merker | Max-Planck-Institut
Weitere Informationen:
http://www.neuro.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Designerviren stacheln Immunabwehr gegen Krebszellen an
26.05.2017 | Universität Basel

nachricht Wachstumsmechanismus der Pilze entschlüsselt
26.05.2017 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

Staphylococcus aureus ist aufgrund häufiger Resistenzen gegenüber vielen Antibiotika ein gefürchteter Erreger (MRSA) insbesondere bei Krankenhaus-Infektionen. Forscher des Paul-Ehrlich-Instituts haben immunologische Prozesse identifiziert, die eine erfolgreiche körpereigene, gegen den Erreger gerichtete Abwehr verhindern. Die Forscher konnten zeigen, dass sich durch Übertragung von Protein oder Boten-RNA (mRNA, messenger RNA) des Erregers auf Immunzellen die Immunantwort in Richtung einer aktiven Erregerabwehr verschieben lässt. Dies könnte für die Entwicklung eines wirksamen Impfstoffs bedeutsam sein. Darüber berichtet PLOS Pathogens in seiner Online-Ausgabe vom 25.05.2017.

Staphylococcus aureus (S. aureus) ist ein Bakterium, das bei weit über der Hälfte der Erwachsenen Haut und Schleimhäute besiedelt und dabei normalerweise keine...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

DFG fördert 15 neue Sonderforschungsbereiche (SFB)

26.05.2017 | Förderungen Preise

Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

26.05.2017 | Biowissenschaften Chemie

Unglaublich formbar: Lesen lernen krempelt Gehirn selbst bei Erwachsenen tiefgreifend um

26.05.2017 | Gesellschaftswissenschaften