Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

„Haariges“ Fortbewegungsmittel in 3D

19.05.2011
Sie bewegen Zellen, verarbeiten Signale von Außen oder sorgen für die korrekte Anordnung der inneren Organe. Diese Aufgaben können die feinen Härchen an der Zelloberfläche jedoch nur erfüllen, wenn ihr Transportsystem sie mit allen lebenswichtigen Stoffen versorgt.

Wissenschaftlern am Max-Planck-Institut für Biochemie (MPIB) in Martinsried bei München ist es jetzt erstmals gelungen, die dreidimensionale Struktur dieses komplexen Transportsystems zu entschlüsseln. So konnten sie wichtige Einblicke in seinen Aufbau und seine Funktionsmechanismen gewinnen. Die Ergebnisse helfen möglicherweise dabei, krankheitsverursachende Störungen zu verhindern. (EMBO Journal, 19. 05. 2011)


Molekulare Struktur der zwei Proteine IFT25 und IFT27, die einen makromolekularen Komplex bilden.
Foto: Esben Lorentzen / Copyright: MPI für Biochemie

An der Oberfläche von eukaryotischen Zellen befinden sich winzige, fünf bis zehn Mikrometer (das sind 0,0005 bis 0,001 cm) lange Flimmerhärchen: die Zilien. So unscheinbar diese Härchen auf den ersten Blick auch sind, so wichtig sind die Aufgaben die sie im Körper erfüllen. Durch die Verteilung bestimmter Botenstoffe während der Entwicklung des Embryos sorgen Zilien für die korrekte Anordnung der inneren Organe. Ist das nicht gewährleistet, kann ein Situs inversus die Folge sein und alle Organe liegen spiegelverkehrt im Körper.

Außerdem verleihen bewegliche Zilien den Spermien ihre Mobilität und bewegen Eizellen entlang des Eileiters. Funktionsstörungen können bei Männern zu Unfruchtbarkeit, bei Frauen zu einer gefährlichen Eileiterschwangerschaft führen. Die unbeweglichen Flimmerhärchen leiten als Sensoren Signale aus der Umwelt weiter und ermöglichen so verschiedene Sinneswahrnehmungen. Sie sitzen beispielsweise in den Photorezeptorzellen des Auges. Defekte dieser Zilienform können eine Verkümmerung der Netzhaut und sogar Erblindung zur Folge haben.

Obwohl Zilien vielfältige Aufgaben erfüllen, weisen sie alle eine sehr ähnliche Struktur auf: Entlang eines Bündels aus Fasern in ihrem Inneren werden Moleküle transportiert, die für Aufbau und Erhalt funktionsfähiger Zilien unverzichtbar sind. Störungen in diesem Transportsystem, das Wissenschaftler Intraflagellären Transport (IFT) nennen, können zu Fehlern beim Aufbau der Zilien und damit zu Krankheiten mit sowohl geistigen als auch körperlichen Störungen führen.

Auch wenn die Wissenschaft schon lange weiß, welche Bedeutung der IFT für die Zilien und damit für einen funktionierenden Organismus hat, konnten seine Strukturen und Mechanismen bisher nicht aufgeklärt werden. Bekannt war lediglich, dass der IFT-Komplex aus mindestens 20 verschiedenen Proteinen (Eiweißen) besteht, die sich auf zwei große Untereinheiten verteilen. Wissenschaftlern um Esben Lorentzen, Leiter der Forschungsgruppe „Strukturbiologie der Zilien“ am MPIB, ist es jetzt gelungen, die Struktur einer Untereinheit des IFT-Komplexes auf molekularer Ebene darzustellen: Mit Hilfe von Röntgenkristallographie konnten sie diesen IFT-Komplex 25/27 in 3D abbilden und so seine Strukturen und Funktionsmechanismen analysieren.

„Der IFT-Komplex 25/27 spielt eine essentielle Rolle bei der Regulierung des IFT-Prozesses. Deshalb stellen unsere Ergebnisse einen ersten Schritt dar, um die Struktur des gesamten IFT-Komplexes und die ihm zugrunde liegenden Mechanismen zu entschlüsseln und zu verstehen“, bewertet Sagar Bhogaraju, Doktorand am MPIB, die Resultate. Ein besseres Verständnis dieses Transportsystems der Zilien könnte wiederum helfen, Ursachen für Störungen aufzudecken und Fehlern vorzubeugen, so die Forscher. Auf diese Weise könnten Krankheiten, die als Folge defekter Zilien auftreten, eines Tages möglicherweise verhindert werden. [UD]

Originalveröffentlichung:
Bhogaraju, S., Taschner, M., Morawetz, M., Basquin, C. and Lorentzen, E. (2011), Crystal Structure of the Intraflagellar Transport Complex 25/27, EMBO Journal, 18. Mai 2011.
Kontakt:
Dr. Esben Lorentzen
Strukturbiologie der Zilien
Max-Planck-Institut für Biochemie
Am Klopferspitz 18
82152 Martinsried
E-Mail: lorentze@biochem.mpg.de
Anja Konschak
Öffentlichkeitsarbeit
Max-Planck-Institut für Biochemie
Am Klopferspitz 18
82152 Martinsried
Tel. +49 89 8578-2824
E-Mail: konschak@biochem.mpg.de

Anja Konschak | Max-Planck-Institut
Weitere Informationen:
http://www.biochem.mpg.de
http://www.biochem.mpg.de/en/rg/lorentzen/ -

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Sollbruchstellen im Rückgrat - Bioabbaubare Polymere durch chemische Gasphasenabscheidung
02.12.2016 | Gesellschaft Deutscher Chemiker e.V.

nachricht "Fingerabdruck" diffuser Protonen entschlüsselt
02.12.2016 | Universität Leipzig

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie