Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

„Haariges“ Fortbewegungsmittel in 3D

19.05.2011
Sie bewegen Zellen, verarbeiten Signale von Außen oder sorgen für die korrekte Anordnung der inneren Organe. Diese Aufgaben können die feinen Härchen an der Zelloberfläche jedoch nur erfüllen, wenn ihr Transportsystem sie mit allen lebenswichtigen Stoffen versorgt.

Wissenschaftlern am Max-Planck-Institut für Biochemie (MPIB) in Martinsried bei München ist es jetzt erstmals gelungen, die dreidimensionale Struktur dieses komplexen Transportsystems zu entschlüsseln. So konnten sie wichtige Einblicke in seinen Aufbau und seine Funktionsmechanismen gewinnen. Die Ergebnisse helfen möglicherweise dabei, krankheitsverursachende Störungen zu verhindern. (EMBO Journal, 19. 05. 2011)


Molekulare Struktur der zwei Proteine IFT25 und IFT27, die einen makromolekularen Komplex bilden.
Foto: Esben Lorentzen / Copyright: MPI für Biochemie

An der Oberfläche von eukaryotischen Zellen befinden sich winzige, fünf bis zehn Mikrometer (das sind 0,0005 bis 0,001 cm) lange Flimmerhärchen: die Zilien. So unscheinbar diese Härchen auf den ersten Blick auch sind, so wichtig sind die Aufgaben die sie im Körper erfüllen. Durch die Verteilung bestimmter Botenstoffe während der Entwicklung des Embryos sorgen Zilien für die korrekte Anordnung der inneren Organe. Ist das nicht gewährleistet, kann ein Situs inversus die Folge sein und alle Organe liegen spiegelverkehrt im Körper.

Außerdem verleihen bewegliche Zilien den Spermien ihre Mobilität und bewegen Eizellen entlang des Eileiters. Funktionsstörungen können bei Männern zu Unfruchtbarkeit, bei Frauen zu einer gefährlichen Eileiterschwangerschaft führen. Die unbeweglichen Flimmerhärchen leiten als Sensoren Signale aus der Umwelt weiter und ermöglichen so verschiedene Sinneswahrnehmungen. Sie sitzen beispielsweise in den Photorezeptorzellen des Auges. Defekte dieser Zilienform können eine Verkümmerung der Netzhaut und sogar Erblindung zur Folge haben.

Obwohl Zilien vielfältige Aufgaben erfüllen, weisen sie alle eine sehr ähnliche Struktur auf: Entlang eines Bündels aus Fasern in ihrem Inneren werden Moleküle transportiert, die für Aufbau und Erhalt funktionsfähiger Zilien unverzichtbar sind. Störungen in diesem Transportsystem, das Wissenschaftler Intraflagellären Transport (IFT) nennen, können zu Fehlern beim Aufbau der Zilien und damit zu Krankheiten mit sowohl geistigen als auch körperlichen Störungen führen.

Auch wenn die Wissenschaft schon lange weiß, welche Bedeutung der IFT für die Zilien und damit für einen funktionierenden Organismus hat, konnten seine Strukturen und Mechanismen bisher nicht aufgeklärt werden. Bekannt war lediglich, dass der IFT-Komplex aus mindestens 20 verschiedenen Proteinen (Eiweißen) besteht, die sich auf zwei große Untereinheiten verteilen. Wissenschaftlern um Esben Lorentzen, Leiter der Forschungsgruppe „Strukturbiologie der Zilien“ am MPIB, ist es jetzt gelungen, die Struktur einer Untereinheit des IFT-Komplexes auf molekularer Ebene darzustellen: Mit Hilfe von Röntgenkristallographie konnten sie diesen IFT-Komplex 25/27 in 3D abbilden und so seine Strukturen und Funktionsmechanismen analysieren.

„Der IFT-Komplex 25/27 spielt eine essentielle Rolle bei der Regulierung des IFT-Prozesses. Deshalb stellen unsere Ergebnisse einen ersten Schritt dar, um die Struktur des gesamten IFT-Komplexes und die ihm zugrunde liegenden Mechanismen zu entschlüsseln und zu verstehen“, bewertet Sagar Bhogaraju, Doktorand am MPIB, die Resultate. Ein besseres Verständnis dieses Transportsystems der Zilien könnte wiederum helfen, Ursachen für Störungen aufzudecken und Fehlern vorzubeugen, so die Forscher. Auf diese Weise könnten Krankheiten, die als Folge defekter Zilien auftreten, eines Tages möglicherweise verhindert werden. [UD]

Originalveröffentlichung:
Bhogaraju, S., Taschner, M., Morawetz, M., Basquin, C. and Lorentzen, E. (2011), Crystal Structure of the Intraflagellar Transport Complex 25/27, EMBO Journal, 18. Mai 2011.
Kontakt:
Dr. Esben Lorentzen
Strukturbiologie der Zilien
Max-Planck-Institut für Biochemie
Am Klopferspitz 18
82152 Martinsried
E-Mail: lorentze@biochem.mpg.de
Anja Konschak
Öffentlichkeitsarbeit
Max-Planck-Institut für Biochemie
Am Klopferspitz 18
82152 Martinsried
Tel. +49 89 8578-2824
E-Mail: konschak@biochem.mpg.de

Anja Konschak | Max-Planck-Institut
Weitere Informationen:
http://www.biochem.mpg.de
http://www.biochem.mpg.de/en/rg/lorentzen/ -

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Proteine entdecken, zählen, katalogisieren
28.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Chemisches Profil von Ameisen passt sich bei Selektionsdruck rasch an
28.06.2017 | Johannes Gutenberg-Universität Mainz

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Schnelles und umweltschonendes Laserstrukturieren von Werkzeugen zur Folienherstellung

Kosteneffizienz und hohe Produktivität ohne dabei die Umwelt zu belasten: Im EU-Projekt »PoLaRoll« entwickelt das Fraunhofer-Institut für Produktionstechnologie IPT aus Aachen gemeinsam mit dem Oberhausener Fraunhofer-Institut für Umwelt-, Sicherheit- und Energietechnik UMSICHT und sechs Industriepartnern ein Modul zur direkten Laser-Mikrostrukturierung in einem Rolle-zu-Rolle-Verfahren. Ziel ist es, mit Hilfe dieses Systems eine siebartige Metallfolie als Demonstrator zu fertigen, die zum Sonnenschutz von Glasfassaden verwendet wird: Durch ihre besondere Geometrie wird die Sonneneinstrahlung reduziert, woraus sich ein verminderter Energieaufwand für Kühlung und Belüftung ergibt.

Das Fraunhofer IPT ist im Projekt »PoLaRoll« für die Prozessentwicklung der Laserstrukturierung sowie für die Mess- und Systemtechnik zuständig. Von den...

Im Focus: Das Auto lernt vorauszudenken

Ein neues Christian Doppler Labor an der TU Wien beschäftigt sich mit der Regelung und Überwachung von Antriebssystemen – mit Unterstützung des Wissenschaftsministeriums und von AVL List.

Wer ein Auto fährt, trifft ständig Entscheidungen: Man gibt Gas, bremst und dreht am Lenkrad. Doch zusätzlich muss auch das Fahrzeug selbst ununterbrochen...

Im Focus: Vorbild Delfinhaut: Elastisches Material vermindert Reibungswiderstand bei Schiffen

Für eine elegante und ökonomische Fortbewegung im Wasser geben Delfine den Wissenschaftlern ein exzellentes Vorbild. Die flinken Säuger erzielen erstaunliche Schwimmleistungen, deren Ursachen einerseits in der Körperform und andererseits in den elastischen Eigenschaften ihrer Haut zu finden sind. Letzteres Phänomen ist bereits seit Mitte des vorigen Jahrhunderts bekannt, konnte aber bislang nicht erfolgreich auf technische Anwendungen übertragen werden. Experten des Fraunhofer IFAM und der HSVA GmbH haben nun gemeinsam mit zwei weiteren Forschungspartnern eine Oberflächenbeschichtung entwickelt, die ähnlich wie die Delfinhaut den Strömungswiderstand im Wasser messbar verringert.

Delfine haben eine glatte Haut mit einer darunter liegenden dicken, nachgiebigen Speckschicht. Diese speziellen Hauteigenschaften führen zu einer signifikanten...

Im Focus: Kaltes Wasser: Und es bewegt sich doch!

Bei minus 150 Grad Celsius flüssiges Wasser beobachten, das beherrschen Chemiker der Universität Innsbruck. Nun haben sie gemeinsam mit Forschern in Schweden und Deutschland experimentell nachgewiesen, dass zwei unterschiedliche Formen von Wasser existieren, die sich in Struktur und Dichte stark unterscheiden.

Die Wissenschaft sucht seit langem nach dem Grund, warum ausgerechnet Wasser das Molekül des Lebens ist. Mit ausgefeilten Techniken gelingt es Forschern am...

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Marine Pilze – hervorragende Quellen für neue marine Wirkstoffe?

28.06.2017 | Veranstaltungen

Willkommen an Bord!

28.06.2017 | Veranstaltungen

Internationale Fachkonferenz IEEE ICDCM - Lokale Gleichstromnetze bereichern die Energieversorgung

27.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

EUROSTARS-Projekt gestartet - mHealth-Lösung: time4you Forschungs- und Entwicklungspartner bei IMPACHS

28.06.2017 | Unternehmensmeldung

Proteine entdecken, zählen, katalogisieren

28.06.2017 | Biowissenschaften Chemie

Neue Scheinwerfer-Dimension: Volladaptive Lichtverteilung in Echtzeit

28.06.2017 | Automotive