Die Guten ins Töpfchen – die Schlechten ins Kröpfchen / Qualitätskontrolle in Muskelzellen

Mikroskopische Aufnahme der neuromuskulären Endplatten eines Bauchfellmuskels der Maus mit den zugehörigen Nervenfasern. Der nikotinische Acetylcholin-Rezeptor (nAChR) in den Endplatten ist rot gefärbt, die Nervenfasern grün. Foto: C. Kaether/FLI<br>

AChR ist ein hochkomplexes, aus mehreren Protein-Untereinheiten bestehendes Molekül. Da ein fehlerhafter oder unvollständiger Zusammenbau zu Funktionsverlust führen kann, unterliegt er sowohl bei der Synthese als auch beim Zusammenbau einer strikten Qualitätskontrolle. Spezielle Kontrollmechanismen gewährleisten, dass nur richtig zusammengebaute Rezeptoren an die Oberfläche der Zelle gelangen dürfen, während fehlerhafte zurückbehalten werden.

Wissenschaftlern aus Jena und Karlsruhe ist es nun gelungen, eine wichtige Komponente dieser Qualitätssicherung im Muskel von Mäusen zu finden und seine Rolle bei der Kontrolle nachzuweisen; ein erster Schritt zum Verständnis dieser komplexen Prüfmechanismen.

Sollen Arme oder Beine bewegt werden, dann signalisieren Nervenzellen den Muskeln, sich zu kontrahieren. Diese Reizübertragung erfolgt an den motorischen Endplatten. Von den Nervenzellen wird der Neurotransmitter Acetylcholin (ACh) freigesetzt, der anschließend an die Acetylcholin-Rezeptoren (nikotinische AChR), den „Antennen“ der Muskeln, bindet und dadurch die Kontraktion einleitet.

Der nAChR besteht aus 5 Untereinheiten: zwei α-Untereinheiten und jeweils einer β-, δ- und γ- oder ε-Untereinheit. Diese bilden an der Kontaktstelle zwischen Nerv und Muskel einen Ionenkanal, der sich durch Bindung von ACh öffnet und Na+-Ionen in den Muskel einlässt. Das daraus resultierende elektrische Signal führt dann zur Kontraktion der Muskelfasern.

Im endoplasmatischen Retikulum (ER) werden die nAChR-Untereinheiten synthetisiert und zum nAChR-Komplex zusammengebaut. Das ER fungiert dabei wie eine Fabrik: alle für die Plasmamembran oder die Umgebung der Zelle bestimmten Proteine werden hier hergestellt und vor Auslieferung durch spezielle Kontrollmechanismen auf ihre Qualität hin überprüft. D.h. nach dem Aschenputtel-Prinzip dürfen nur fertig zusammengebaute Komplexe (Die Guten…) die Zelle verlassen, während defekte Komplexe oder einzelne Bausteine (Die Schlechten…) daran gehindert und zurücktransportiert werden. Obwohl nAChR eines der wichtigsten und am besten untersuchten Moleküle ist, ist dennoch wenig über die Kontrollmechanismen, die Art und Weise des Zusammenbaus und den daran beteiligten Proteinen bekannt.

Forschern um Dr. Christoph Kaether vom Leibniz-Institut für Altersforschung – Fritz-Lipmann-Institut (FLI) in Jena und Dr. Rüdiger Rudolf vom Karlsruher Institut für Technologie (KIT), zusammen mit Instituten in Kiel und Padua (Italien), gelang es nun, eine wichtige Komponente dieser Kontrollmechanismen zu entschlüsseln und seine Rolle bei der Qualitätsprüfung im Muskel nachzuweisen; ein erster, wichtiger Schritt für das Verständnis, wie die Qualitätssicherung funktionieren könnte. Diese Forschungen wurden von der Deutschen Forschungsgemeinschaft unterstützt und die Ergebnisse in der aktuellen Ausgabe der anerkannten Fachzeitschrift “PNAS“ (December 27, 2010; DOI: 10.1073/pnas.1001624108) publiziert.

„Uns gelang der Nachweis, das Rer1, ein neuartiges Sortier-Protein, durch Bindung an die α-Untereinheiten von nAChR dafür sorgt, dass diese im ER bleiben, bis sie in einen Rezeptor-Komplex eingebaut werden. Rer1 ist folglich an der Qualitätskontrolle beteiligt und steuert den Zusammenbau von nAChR-Komplexen im Muskel“, so Dr. Christoph Kaether, Nachwuchsgruppenleiter der AG Membrantransport am FLI.

Die Forscher konnten in Zellkulturen und Mäusen zeigen, dass nach Entfernung von Rer1 die Qualitätskontrolle nicht mehr richtig funktionierte und freie α-Untereinheiten das ER verließen, ohne in einen Komplex eingebaut worden zu sein. „Dieser Rer1-Mangel führte bei Mäusen zu kleineren neuromuskulären Endplatten und dünneren Muskelfasern, was auch eine Störung der Signalübertragung vermuten lässt“, deutet Kaether an. „Mit diesen neuen Erkenntnissen haben wir nicht nur eine wichtige Komponente des Kontrollmechanismus identifiziert, sondern wir verstehen nun langsam, wie dieser funktionieren könnte, was gerade im Hinblick auf krankheitsbedingte Fehlfunktionen des Muskels ein wichtiger Ansatz wäre.“

Der mit dem Alter einhergehende Schwund von Muskelmasse und -kraft, der durch einen passiven Lebensstil noch verstärkt werden kann, wird allgemein als Muskelschwund (Sarkopenie) bezeichnet. „Wir stellen uns die Frage, ob es womöglich einen Zusammenhang zwischen Sarkopenie und dem Vorhandensein bzw. Fehlen von Rer1 im gealterten Muskel gibt“, merkt Christina Valkova an. Die Post-Doktorandin in der Kaether-Gruppe hat bereits mit den Arbeiten zu dieser Fragestellung begonnen.

Kontakt:

Dr. Kerstin Wagner
Leibniz-Institut für Altersforschung – Fritz-Lipmann-Institut (FLI)
Beutenbergstr. 11, 07745 Jena
Tel.: 03641-656371, Fax: 03641-656335, E-Mail: koordinator@fli-leibniz.de
Originalpublikation:
Ch. Valkova, M. Albrizio, I.V. Röder, M. Schwake, R. Betto, R. Rudolf, Ch. Kaether: Sorting receptor Rer1 controls surface expression of muscle acetylcholine receptors by ER retention of unassembled {alpha}-subunits. Proc Natl Acad Sci USA. (2010), Dec 27, DOI: 10.1073/pnas.1001624108

Media Contact

Dr. Kerstin Wagner idw

Weitere Informationen:

http://www.fli-leibniz.de

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neues topologisches Metamaterial

… verstärkt Schallwellen exponentiell. Wissenschaftlerinnen und Wissenschaftler am niederländischen Forschungsinstitut AMOLF haben in einer internationalen Kollaboration ein neuartiges Metamaterial entwickelt, durch das sich Schallwellen auf völlig neue Art und Weise…

Astronomen entdecken starke Magnetfelder

… am Rand des zentralen schwarzen Lochs der Milchstraße. Ein neues Bild des Event Horizon Telescope (EHT) hat starke und geordnete Magnetfelder aufgespürt, die vom Rand des supermassereichen schwarzen Lochs…

Faktor für die Gehirnexpansion beim Menschen

Was unterscheidet uns Menschen von anderen Lebewesen? Der Schlüssel liegt im Neokortex, der äußeren Schicht des Gehirns. Diese Gehirnregion ermöglicht uns abstraktes Denken, Kunst und komplexe Sprache. Ein internationales Forschungsteam…

Partner & Förderer