Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gute Vorbereitung ist alles – auch bei Pflanzenzellen und Symbiosepilzen

11.11.2011
Nicht nur Öl und Erdgas, auch der Phosphor wird knapp. Bereits in 20 Jahren werden wir uns einem eklatanten Phosphatmangel stellen müssen.

Schon jetzt sind viele Böden so verarmt, dass die Pflanzen nur dank einer Symbiose mit den arbuskulären Mykorrhizapilzen (AM-Pilzen) genügend Phosphor aus dem Boden aufnehmen können. Da die AM-Symbiose asynchron abläuft, also in verschiedenen Zellen einer Wurzel unterschiedliche Phasen der Symbioseentwicklung vorkommen, wollten die Wissenschaftler auch ganz spezielle Zelltypen untersuchen. Mit Hilfe eines Laserstrahls gelang es ihnen, einzelne Zellen aus dem Gewebeverband herauszutrennen und ihre individuelle Genaktivität zu entschlüsseln.

Wenn Forscher Pflanzen auf ihre Inhaltsstoffe hin untersuchen, so gehen sie meistens davon aus, dass Zellen aus einem Gewebe die gleichen Substanzen enthalten. In vielen Fällen ist das auch so. Die einzelnen Zellen aus Blättern, Sprossachsen oder Wurzeln ähneln sich untereinander in ihrem Stoffwechsel und ihrer Genaktivität. Komplizierter wird die Sache erst, wenn Pflanzen zum Beispiel mit Pilzen eine Symbiose eingehen, denn dadurch kann der Stoffwechsel der Pflanzenzellen umprogrammiert werden und auch Nachbarzellen können sich im Hinblick auf ihre Genexpression drastisch unterscheiden.

Die am weitesten verbreitete Symbiose ist die zwischen Wurzelzellen und arbuskulären Mykorrhizapilzen, kurz AM-Pilze genannt. Unbemerkt vom Großteil der Menschheit sorgen diese Pilze dafür, dass Pflanzen auch auf nährstoffarmen Böden wachsen können. Sie strecken ihre fadenförmigen Zellen, die Hyphen, weit in das Erdreich hinein und können somit viel mehr Nährstoffe aus dem Boden aufnehmen, als es der Pflanze über ihre Wurzeln möglich ist. Hauptsächlich Phosphat, vermutlich aber auch Nitrat und Metalle wie Kupfer, Zink und Eisen gibt der Pilz bereitwillig an die Pflanze ab. Im Gegenzug erhält der Pilz von der Pflanze Zucker, den sie über die Photosynthese herstellt.

Pilz- und Pflanzenzelle verschmelzen aber nie direkt, sie sind ständig durch ihre Membranen – also die Außenwand der Zellen – voneinander getrennt. Damit die großen Zucker- und Phosphatmoleküle trotzdem von einer Zelle in die andere gelangen können, ändern die Pflanzenzellen die Struktur ihrer Zellmembran. Sie bauen große Proteinkomplexe in die Membranen ein, durch die Stoffe wie durch einen Tunnel hinein- und hinauswandern können. Wenig erstaunlich war es deshalb, dass die Forscher in den bereits vom Pilz infiltrierten Pflanzenzellen vermehrt Gene für solche Transportproteine fanden. Überraschender ist die Tatsache, dass auch die Zellen, die sich in der Nähe der kolonisierten Zellen befinden, umprogrammiert waren. Mehr als 800 Gene zeigten ausschließlich in diesen Zellen eine veränderte Aktivität. „Das vermehrte Ablesen von Genen, die für Transportproteine, Fettstoffwechsel und Genregulation zuständig sind, scheint also nicht von der Pilzbesiedelung selbst ausgelöst zu werden“ erklärt Nicole Gaude, die Erstautorin der Studie. Wahrscheinlicher ist es, dass die Zellen sich auf eine baldige Besiedelung des Pilzes vorbereiten.

Möglich wurden diese exakten Ergebnisse durch Lasermikrodissektion. Dabei handelt es sich um ein Verfahren, bei dem mit Hilfe eines Laserstrahls unter dem Mikroskop einzelne Zellen aus Geweben ausgeschnitten werden können. Mindestens 5000 Zellen haben Gaude und ihr Team per Handarbeit mit dem Laserstrahl aus dem Gewebe getrennt, eine Sisyphusarbeit. Doch der Aufwand hat sich gelohnt. „Wir wissen jetzt, welche Gene bei der Entstehung einer Symbiose aktiviert werden.“, so Gaude.

Ein Verständnis dieses Symbioseprogramms von Pflanzen könnte in Zukunft den Einsatz von Mykorrhizapilzen in der Landwirtschaft denkbar machen und somit den Einsatz künstlicher, teurer Dünger reduzieren.

Kontakt

Nicole Gaude/Franziska Krajinski
Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam
Tel. 0331/567 8355
Gaude@mpimp-golm.mpg.de
Krajinski@mpimp-golm.mpg.de
Claudia Steinert
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam
Tel. 0331/567 8275
Steinert@mpimp-golm.mpg.de
http://www.mpimp-golm.mpg.de
Originalveröffentlichung
Nicole Gaude, Silvia Bortfeld, Nina Duensing, Marc Lohse, Franziska Krajinski
Arbuscule-containing and non-colonized cortical cells of mycorrhizal roots undergo a massive and specific reprogramming during arbuscular mycorrhizal development

The Plant Journal, Vorabveröffentlichung Online am 06. Oktober, DOI: 10.1111/j.1365-313X.2011.04810.x

Ursula Ross-Stitt | Max-Planck-Institut
Weitere Informationen:
http://www.mpimp-golm.mpg.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neue Einblicke in die Welt der Trypanosomen
16.08.2017 | Julius-Maximilians-Universität Würzburg

nachricht Geographie verrät das Alter von Viren
16.08.2017 | Universität Bern

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Wissenschaftler beleuchten den „anderen Hochtemperatur-Supraleiter“

Eine von Wissenschaftlern des Max-Planck-Instituts für Struktur und Dynamik der Materie (MPSD) geleitete Studie zeigt, dass Supraleitung und Ladungsdichtewellen in Verbindungen der wenig untersuchten Familie der Bismutate koexistieren können.

Diese Beobachtung eröffnet neue Perspektiven für ein vertieftes Verständnis des Phänomens der Hochtemperatur-Supraleitung, ein Thema, welches die Forschung der...

Im Focus: Tests der Quantenmechanik mit massiven Teilchen

Quantenmechanische Teilchen können sich wie Wellen verhalten und mehrere Wege gleichzeitig nehmen, um an ihr Ziel zu gelangen. Dieses Prinzip basiert auf Borns Regel, einem Grundpfeiler der Quantenmechanik; eine mögliche Abweichung hätte weitreichende Folgen und könnte ein Indikator für neue Phänomene in der Physik sein. WissenschafterInnen der Universität Wien und Tel Aviv haben nun diese Regel explizit mit Materiewellen überprüft, indem sie massive Teilchen an einer Kombination aus Einzel-, Doppel- und Dreifachspalten interferierten. Die Analyse bestätigt den Formalismus der etablierten Quantenmechanik und wurde im Journal "Science Advances" publiziert.

Die Quantenmechanik beschreibt sehr erfolgreich das Verhalten von Partikeln auf den kleinsten Masse- und Längenskalen. Die offensichtliche Unvereinbarkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

Sensibilisierungskampagne zu Pilzinfektionen

15.08.2017 | Veranstaltungen

Anbausysteme im Wandel: Europäische Ackerbaubetriebe müssen sich anpassen

15.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Neue Einblicke in die Welt der Trypanosomen

16.08.2017 | Biowissenschaften Chemie

Maschinensteuerung an Anwender: Intelligentes System für mobile Endgeräte in der Fertigung

16.08.2017 | Informationstechnologie

Komfortable Software für die Genomanalyse

16.08.2017 | Informationstechnologie