Grundstrukturen des Sehens entschlüsselt

Schematisch dargestellte Struktur eines Rhodopsin-Moleküls. Im Inneren ist das Retinal-Molekül zu sehen. Der grau unterlegte Streifen deutet die Zellmembran an. Der Teil im Bild oben ist innerhalb der Zelle, der Teil unten ist ausserhalb. Links: passiver zustand ohne Licht, rechts: vom Licht aktivierter Zustand – das Retinal ist gestreckt, die Anordnung der sieben Stabförmigen Teile des Moleküls so verändert, dass das G-Protein (braun dargestellt) Platz findet. Grafik: PSI/J. Standfuss<br>

Am Anfang des Sehvorgangs steht die Wechselwirkung des Lichts mit dem Protein Rhodopsin. Dieses enthält den eigentlichen Lichtsensor, der angeregt wird, seine Form zu verändern und so den Rest des Vorgangs anzustossen.

Forscher des Paul Scherrer Instituts haben zusammen mit Kollegen aus Grossbritannien und den USA die Struktur des Rhodopsinmoleküls in dem kurzlebigen angeregten Zustand bestimmt und so ein genaues Bild der ersten Stufe des Sehvorgangs geliefert. Über Ihre Ergebnisse berichten die Forschenden in der Online-Ausgabe des Journals Nature.

Beim Sehen löst Licht, das ins Auge fällt, einen mehrstufigen chemischen Vorgang aus. An dessen Ende steht ein Nervenimpuls, der den Lichteindruck in Richtung Gehirn weiterleitet. Am Anfang steht die Wechselwirkung des Lichts mit dem Protein Rhodopsin. Dieses enthält den eigentlichen Lichtsensor – der von dem einfallenden Licht dazu angeregt wird, seine Form zu verändern und so den Vorgang anzustossen.

Forschern des Paul Scherrer Instituts ist es nun gelungen, zusammen mit Kollegen aus Grossbritannien und den USA, die genaue Struktur des Rhodopsinmoleküls in diesem kurzlebigen angeregten Zustand zu bestimmen und so ein genaues Bild der ersten Stufe des Sehvorgangs zu liefern. Dieses Ergebnis dürfte zum besseren Verständnis der erblichen Augenkrankheit Retinitis Pigmentosa beitragen und möglicherweise Wege für deren Behandlung oder Verlangsamung aufzeigen. Gleichzeitig liefert das Ergebnis die Basis für das Verständnis vieler weiterer Vorgänge im Organismus, die auf einem ähnlichen Mechanismus beruhen – etwa die Wahrnehmung von Gerüchen oder die Steuerung von Abläufen über Hormone. Über Ihre Ergebnisse berichten die Forschenden in der neuesten Ausgabe des Journals Nature.

Sehen ist ein hochkomplexer Vorgang – eine Vielzahl von chemischen Reaktionen muss ablaufen bevor das Gesehene unser Bewusstsein erreicht. Ganz am Anfang dieses Vorgangs trifft das Licht auf die Sehsinneszellen in der Netzhaut des Auges – die Zapfen oder Stäbchen. In den Zellmembranen der Stäbchen, die für das Sehen bei schlechten Lichtverhältnissen zuständig sind, sitzen Rhodopsin-Moleküle – die eigentlichen Lichtsensoren. Sie bestehen aus jeweils insgesamt sieben stabförmigen Molekülteilen, die von aussen ins Innere der Zelle hineinreichen. Fällt Licht von aussen auf das Rhodopsin, verändert sich die Anordnung der stabförmigen Teile so, dass im Inneren der Zelle ein so genanntes G-Proteinmolekül Platz dazwischen findet. Das Andocken des G-Proteins stösst eine Kaskade von Vorgängen an, an deren Ende ein Nervenimpuls ausgelöst wird.

Das eigentlich lichtempfindliche Pigment ist das Retinal – eine Form von Vitamin A – das als kleines geknicktes Molekül zwischen den sieben Teilen des Rhodopsins steckt. Sobald Licht darauf fällt, streckt es sich und drückt Teile des Rhodopsins auseinander, so dass Platz für das G-Protein entsteht. Nun ist es Forschern des Paul Scherrer Instituts gelungen, die Struktur des Rhodopsins im aktivierten Zustand zu bestimmen – also in der durch das Licht veränderten Form mit dem gestreckten Retinal. Dieser Zustand ist eigentlich sehr kurzlebig, da das Rhodopsin ja möglichst schnell in den Zustand zurückkehren muss, in dem es für Licht empfänglich ist. Die PSI-Forscher haben aber einen Weg gefunden, das Molekül geringfügig so zu verändern, dass es die aktivierte Form länger beibehält und konnten damit seine Struktur bestimmen. Die Struktur der inaktiven Form des Rhodopsins, wie sie ohne Licht auftritt, war schon vorher bekannt. Mit der Kenntnis beider Strukturen kann man jetzt genau nachvollziehen wie der Sehvorgang im Auge auf molekularer Ebene beginnt.

Für die Untersuchungen wurden die entsprechenden Moleküle in grosser Menge erzeugt und in einer Kristallstruktur regelmässig angeordnet. Dabei ist Rhodopsin eines der sehr wenigen Membranproteine dieser Klasse, die sich kristallisieren lassen. Die Kristalle wurden mit Synchrotronlicht durchleuchtet und aus der Ablenkung des Lichts auf dem Weg durch den Kristall können die Forschenden auf die Struktur der untersuchten Moleküle schliessen. Die Messungen wurden an der Synchrotron Lichtquelle Schweiz SLS des Paul Scherrer Instituts und an zwei weiteren ähnlichen Anlagen durchgeführt.

Universelle Mechanismen des Lebens verstehen

„Die Untersuchung des Rhodopsins hilft uns eine grosse Klasse von ähnlichen Molekülen zu verstehen – es gibt mehr als 800 davon im Menschen.“ Erklärt Jörg Standfuss, Leiter des Forschungsprojekts „Die meisten reagieren nicht auf Licht, sondern auf andere Reize und erfüllen so die unterschiedlichsten Aufgaben: Im Geruchssinn reagieren sie auf Substanzen aus der Atemluft. Oder sie dienen als Rezeptoren für Hormone innerhalb des Körpers – wie etwa die Beta-Rezeptoren, die am Herzen für Steuerung des Blutdrucks mitverantwortlich sind“. Diese dienen als Andockstelle für die als Betablocker bekannten Mittel gegen Bluthochdruck. Insgesamt sind diese Moleküle von grossem Interesse für die pharmazeutische Forschung, weil man über sie Vorgänge im Körper sehr gezielt steuern oder blockieren kann. So wechselwirken etwa Medikamente, die bei Herzrhythmusstörungen, Migräne oder Allergien eingesetzt werden, mit diesen Rezeptoren. Der genaue Aufbau der Beta-Rezeptoren war Thema einer weiteren Arbeit, die Forscher des Paul Scherrer Instituts mit Kollegen in Cambridge vor kurzem in Nature veröffentlicht haben.

Optimierte Therapien für Augenkrankheit

„Unsere Erfahrung mit der Strukturuntersuchung an veränderten Rhodopsin-Molekülen wenden wir derzeit auch zur Erforschung einer verbreiteten Augenkrankheit an – der Retinitis Pigmentosa“, erklärt Standfuss. Bei dieser ererbten Krankheit ist oftmals das Rhodopsin in den Zapfen des Auges verändert So wird es nicht wie im gesunden Auge regelmässig vollständig erneuert – es verbleiben stets Teile der „alten“ Moleküle, die allmählich die Sehzellen vergiften. Das führt anfangs zu Nachtblindheit und über längere Zeit zu einem deutlich eingeschränkten Gesichtsfeld. Standfuss dazu: „In Zukunft werden wir genau bestimmen können, in welcher Weise das Rhodopsin bei der Erkrankung verändert ist, und dann auch untersuchen, wie kleine Moleküle, die als Medikamente die Erkrankung aufhalten, in das Rhodopsin eingebaut werden.“ Mit diesem Wissen könnte man dann am Computer die Struktur der Medikamente gezielt optimieren.

Internationale Forschung

Jörg Standfuss und der Leiter des Labors für Biomolekulare Forschung am Paul Scherrer Institut, Prof. Gebhard Schertler haben das Projekt am MRC Laboratory of Molecular Biology in Cambridge (England) begonnen und nach ihrem Umzug ans PSI zu Ende geführt. Sie haben dabei eng mit Kollegen der Brandeis University, USA zusammengearbeitet.

Über das PSI
Das Paul Scherrer Institut entwickelt, baut und betreibt grosse und komplexe Forschungsanlagen und stellt sie der nationalen und internationalen Forschungsgemeinde zur Verfügung. Eigene Forschungsschwerpunkte sind Festkörperforschung und Materialwissenschaften, Elementarteilchenphysik, Biologie und Medizin, Energie- und Umweltforschung. Mit 1400 Mitarbeitenden und einem Jahresbudget von rund 300 Mio. CHF ist es das grösste Forschungsinstitut der Schweiz.

Kontakt / Ansprechpartner

Dr. Jörg Standfuss, Labor für Biomolekulare Forschung, Paul Scherrer Institut, 5232 Villigen PSI, Schweiz

Telefon: +41(0)56 310 2586, E-Mail: joerg.standfuss@psi.ch

Prof. Dr. Gebhard Schertler, Leiter des Labors für Biomolekulare Forschung, Paul Scherrer Institut, 5232 Villigen PSI, Schweiz

Telefon: +41(0)56 310 4265, E-Mail: gebhard.schertler@psi.ch

Originalveröffentlichung

The structural basis of agonist induced activation in constitutively active Rhodopsin
Jörg Standfuss, Patricia C. Edwards, Aaron D’Antona, Maikel Fransen, Guifu Xie, Daniel D. Oprian, Gebhard F. X. Schertler

Nature Advance Online Publication 9 March 2011; doi: 10.1038/nature09795

Media Contact

Paul Piwnicki idw

Weitere Informationen:

http://psi.ch/qumv

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Ideen für die Zukunft

TU Berlin präsentiert sich vom 22. bis 26. April 2024 mit neun Projekten auf der Hannover Messe 2024. Die HANNOVER MESSE gilt als die Weltleitmesse der Industrie. Ihr diesjähriger Schwerpunkt…

Peptide auf interstellarem Eis

Dass einfache Peptide auf kosmischen Staubkörnern entstehen können, wurde vom Forschungsteam um Dr. Serge Krasnokutski vom Astrophysikalischen Labor des Max-Planck-Instituts für Astronomie an der Universität Jena bereits gezeigt. Bisher ging…

Wasserstoff-Produktion in der heimischen Garage

Forschungsteam der Frankfurt UAS entwickelt Prototyp für Privathaushalte: Förderzusage vom Land Hessen für 2. Projektphase. Wasserstoff als Energieträger der Zukunft ist nicht frei verfügbar, sondern muss aufwendig hergestellt werden. Das…

Partner & Förderer