Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Grundstrukturen des Sehens entschlüsselt

10.03.2011
Was in der Netzhaut am Anfang des Sehrvorgangs geschieht.

Am Anfang des Sehvorgangs steht die Wechselwirkung des Lichts mit dem Protein Rhodopsin. Dieses enthält den eigentlichen Lichtsensor, der angeregt wird, seine Form zu verändern und so den Rest des Vorgangs anzustossen.


Schematisch dargestellte Struktur eines Rhodopsin-Moleküls. Im Inneren ist das Retinal-Molekül zu sehen. Der grau unterlegte Streifen deutet die Zellmembran an. Der Teil im Bild oben ist innerhalb der Zelle, der Teil unten ist ausserhalb. Links: passiver zustand ohne Licht, rechts: vom Licht aktivierter Zustand – das Retinal ist gestreckt, die Anordnung der sieben Stabförmigen Teile des Moleküls so verändert, dass das G-Protein (braun dargestellt) Platz findet. Grafik: PSI/J. Standfuss

Forscher des Paul Scherrer Instituts haben zusammen mit Kollegen aus Grossbritannien und den USA die Struktur des Rhodopsinmoleküls in dem kurzlebigen angeregten Zustand bestimmt und so ein genaues Bild der ersten Stufe des Sehvorgangs geliefert. Über Ihre Ergebnisse berichten die Forschenden in der Online-Ausgabe des Journals Nature.

Beim Sehen löst Licht, das ins Auge fällt, einen mehrstufigen chemischen Vorgang aus. An dessen Ende steht ein Nervenimpuls, der den Lichteindruck in Richtung Gehirn weiterleitet. Am Anfang steht die Wechselwirkung des Lichts mit dem Protein Rhodopsin. Dieses enthält den eigentlichen Lichtsensor – der von dem einfallenden Licht dazu angeregt wird, seine Form zu verändern und so den Vorgang anzustossen.

Forschern des Paul Scherrer Instituts ist es nun gelungen, zusammen mit Kollegen aus Grossbritannien und den USA, die genaue Struktur des Rhodopsinmoleküls in diesem kurzlebigen angeregten Zustand zu bestimmen und so ein genaues Bild der ersten Stufe des Sehvorgangs zu liefern. Dieses Ergebnis dürfte zum besseren Verständnis der erblichen Augenkrankheit Retinitis Pigmentosa beitragen und möglicherweise Wege für deren Behandlung oder Verlangsamung aufzeigen. Gleichzeitig liefert das Ergebnis die Basis für das Verständnis vieler weiterer Vorgänge im Organismus, die auf einem ähnlichen Mechanismus beruhen – etwa die Wahrnehmung von Gerüchen oder die Steuerung von Abläufen über Hormone. Über Ihre Ergebnisse berichten die Forschenden in der neuesten Ausgabe des Journals Nature.

Sehen ist ein hochkomplexer Vorgang – eine Vielzahl von chemischen Reaktionen muss ablaufen bevor das Gesehene unser Bewusstsein erreicht. Ganz am Anfang dieses Vorgangs trifft das Licht auf die Sehsinneszellen in der Netzhaut des Auges – die Zapfen oder Stäbchen. In den Zellmembranen der Stäbchen, die für das Sehen bei schlechten Lichtverhältnissen zuständig sind, sitzen Rhodopsin-Moleküle – die eigentlichen Lichtsensoren. Sie bestehen aus jeweils insgesamt sieben stabförmigen Molekülteilen, die von aussen ins Innere der Zelle hineinreichen. Fällt Licht von aussen auf das Rhodopsin, verändert sich die Anordnung der stabförmigen Teile so, dass im Inneren der Zelle ein so genanntes G-Proteinmolekül Platz dazwischen findet. Das Andocken des G-Proteins stösst eine Kaskade von Vorgängen an, an deren Ende ein Nervenimpuls ausgelöst wird.

Das eigentlich lichtempfindliche Pigment ist das Retinal – eine Form von Vitamin A – das als kleines geknicktes Molekül zwischen den sieben Teilen des Rhodopsins steckt. Sobald Licht darauf fällt, streckt es sich und drückt Teile des Rhodopsins auseinander, so dass Platz für das G-Protein entsteht. Nun ist es Forschern des Paul Scherrer Instituts gelungen, die Struktur des Rhodopsins im aktivierten Zustand zu bestimmen – also in der durch das Licht veränderten Form mit dem gestreckten Retinal. Dieser Zustand ist eigentlich sehr kurzlebig, da das Rhodopsin ja möglichst schnell in den Zustand zurückkehren muss, in dem es für Licht empfänglich ist. Die PSI-Forscher haben aber einen Weg gefunden, das Molekül geringfügig so zu verändern, dass es die aktivierte Form länger beibehält und konnten damit seine Struktur bestimmen. Die Struktur der inaktiven Form des Rhodopsins, wie sie ohne Licht auftritt, war schon vorher bekannt. Mit der Kenntnis beider Strukturen kann man jetzt genau nachvollziehen wie der Sehvorgang im Auge auf molekularer Ebene beginnt.

Für die Untersuchungen wurden die entsprechenden Moleküle in grosser Menge erzeugt und in einer Kristallstruktur regelmässig angeordnet. Dabei ist Rhodopsin eines der sehr wenigen Membranproteine dieser Klasse, die sich kristallisieren lassen. Die Kristalle wurden mit Synchrotronlicht durchleuchtet und aus der Ablenkung des Lichts auf dem Weg durch den Kristall können die Forschenden auf die Struktur der untersuchten Moleküle schliessen. Die Messungen wurden an der Synchrotron Lichtquelle Schweiz SLS des Paul Scherrer Instituts und an zwei weiteren ähnlichen Anlagen durchgeführt.

Universelle Mechanismen des Lebens verstehen

„Die Untersuchung des Rhodopsins hilft uns eine grosse Klasse von ähnlichen Molekülen zu verstehen – es gibt mehr als 800 davon im Menschen.“ Erklärt Jörg Standfuss, Leiter des Forschungsprojekts „Die meisten reagieren nicht auf Licht, sondern auf andere Reize und erfüllen so die unterschiedlichsten Aufgaben: Im Geruchssinn reagieren sie auf Substanzen aus der Atemluft. Oder sie dienen als Rezeptoren für Hormone innerhalb des Körpers – wie etwa die Beta-Rezeptoren, die am Herzen für Steuerung des Blutdrucks mitverantwortlich sind“. Diese dienen als Andockstelle für die als Betablocker bekannten Mittel gegen Bluthochdruck. Insgesamt sind diese Moleküle von grossem Interesse für die pharmazeutische Forschung, weil man über sie Vorgänge im Körper sehr gezielt steuern oder blockieren kann. So wechselwirken etwa Medikamente, die bei Herzrhythmusstörungen, Migräne oder Allergien eingesetzt werden, mit diesen Rezeptoren. Der genaue Aufbau der Beta-Rezeptoren war Thema einer weiteren Arbeit, die Forscher des Paul Scherrer Instituts mit Kollegen in Cambridge vor kurzem in Nature veröffentlicht haben.

Optimierte Therapien für Augenkrankheit

„Unsere Erfahrung mit der Strukturuntersuchung an veränderten Rhodopsin-Molekülen wenden wir derzeit auch zur Erforschung einer verbreiteten Augenkrankheit an – der Retinitis Pigmentosa“, erklärt Standfuss. Bei dieser ererbten Krankheit ist oftmals das Rhodopsin in den Zapfen des Auges verändert So wird es nicht wie im gesunden Auge regelmässig vollständig erneuert – es verbleiben stets Teile der „alten“ Moleküle, die allmählich die Sehzellen vergiften. Das führt anfangs zu Nachtblindheit und über längere Zeit zu einem deutlich eingeschränkten Gesichtsfeld. Standfuss dazu: „In Zukunft werden wir genau bestimmen können, in welcher Weise das Rhodopsin bei der Erkrankung verändert ist, und dann auch untersuchen, wie kleine Moleküle, die als Medikamente die Erkrankung aufhalten, in das Rhodopsin eingebaut werden.“ Mit diesem Wissen könnte man dann am Computer die Struktur der Medikamente gezielt optimieren.

Internationale Forschung

Jörg Standfuss und der Leiter des Labors für Biomolekulare Forschung am Paul Scherrer Institut, Prof. Gebhard Schertler haben das Projekt am MRC Laboratory of Molecular Biology in Cambridge (England) begonnen und nach ihrem Umzug ans PSI zu Ende geführt. Sie haben dabei eng mit Kollegen der Brandeis University, USA zusammengearbeitet.

Über das PSI
Das Paul Scherrer Institut entwickelt, baut und betreibt grosse und komplexe Forschungsanlagen und stellt sie der nationalen und internationalen Forschungsgemeinde zur Verfügung. Eigene Forschungsschwerpunkte sind Festkörperforschung und Materialwissenschaften, Elementarteilchenphysik, Biologie und Medizin, Energie- und Umweltforschung. Mit 1400 Mitarbeitenden und einem Jahresbudget von rund 300 Mio. CHF ist es das grösste Forschungsinstitut der Schweiz.

Kontakt / Ansprechpartner

Dr. Jörg Standfuss, Labor für Biomolekulare Forschung, Paul Scherrer Institut, 5232 Villigen PSI, Schweiz

Telefon: +41(0)56 310 2586, E-Mail: joerg.standfuss@psi.ch

Prof. Dr. Gebhard Schertler, Leiter des Labors für Biomolekulare Forschung, Paul Scherrer Institut, 5232 Villigen PSI, Schweiz

Telefon: +41(0)56 310 4265, E-Mail: gebhard.schertler@psi.ch

Originalveröffentlichung

The structural basis of agonist induced activation in constitutively active Rhodopsin
Jörg Standfuss, Patricia C. Edwards, Aaron D’Antona, Maikel Fransen, Guifu Xie, Daniel D. Oprian, Gebhard F. X. Schertler

Nature Advance Online Publication 9 March 2011; doi: 10.1038/nature09795

Paul Piwnicki | idw
Weitere Informationen:
http://psi.ch/qumv

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Aufräumen? Nicht ohne Helfer
19.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Einzelne Rezeptoren auf der Arbeit
19.10.2017 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Schmetterlingsflügel inspiriert Photovoltaik: Absorption lässt sich um bis zu 200 Prozent steigern

Sonnenlicht, das von Solarzellen reflektiert wird, geht als ungenutzte Energie verloren. Die Flügel des Schmetterlings „Gewöhnliche Rose“ (Pachliopta aristolochiae) zeichnen sich durch Nanostrukturen aus, kleinste Löcher, die Licht über ein breites Spektrum deutlich besser absorbieren als glatte Oberflächen. Forschern am Karlsruher Institut für Technologie (KIT) ist es nun gelungen, diese Nanostrukturen auf Solarzellen zu übertragen und deren Licht-Absorptionsrate so um bis zu 200 Prozent zu steigern. Ihre Ergebnisse veröffentlichten die Wissenschaftler nun im Fachmagazin Science Advances. DOI: 10.1126/sciadv.1700232

„Der von uns untersuchte Schmetterling hat eine augenscheinliche Besonderheit: Er ist extrem dunkelschwarz. Das liegt daran, dass er für eine optimale...

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Im Focus: Neue Möglichkeiten für die Immuntherapie beim Lungenkrebs entdeckt

Eine gemeinsame Studie der Universität Bern und des Inselspitals Bern zeigt, dass spezielle Bindegewebszellen, die in normalen Blutgefässen die Wände abdichten, bei Lungenkrebs nicht mehr richtig funktionieren. Zusätzlich unterdrücken sie die immunologische Bekämpfung des Tumors. Die Resultate legen nahe, dass diese Zellen ein neues Ziel für die Immuntherapie gegen Lungenkarzinome sein könnten.

Lungenkarzinome sind die häufigste Krebsform weltweit. Jährlich werden 1.8 Millionen Neudiagnosen gestellt; und 2016 starben 1.6 Millionen Menschen an der...

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Das Immunsystem in Extremsituationen

19.10.2017 | Veranstaltungen

Die jungen forschungsstarken Unis Europas tagen in Ulm - YERUN Tagung in Ulm

19.10.2017 | Veranstaltungen

Bauphysiktagung der TU Kaiserslautern befasst sich mit energieeffizienten Gebäuden

19.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Aufräumen? Nicht ohne Helfer

19.10.2017 | Biowissenschaften Chemie

Neue Biotinte für den Druck gewebeähnlicher Strukturen

19.10.2017 | Materialwissenschaften

Forscher studieren molekulare Konversion auf einer Zeitskala von wenigen Femtosekunden

19.10.2017 | Physik Astronomie