Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Grundlage für bessere Antibiotika

06.10.2014

Forscher der ETH Zürich entschlüsseln die Struktur der grossen Untereinheit des Ribosoms der Mitochondrien bis ins atomare Detail. Dies ermöglicht nie dagewesene Einblicke in die molekulare Architektur dieses Ribosoms und in die Wirkungsweise von Antibiotika.

Ein Team von Forschenden der ETH Zürich rund um die Professoren Nenad Ban und Ruedi Aebersold hat die hoch komplexe molekulare Struktur der Mitoribosomen, den Ribosomen von Mitochondrien, aufgeklärt. Ribosomen kommen in den Zellen aller lebenden Organismen vor.

Allerdings weisen höhere Organismen (Eukaryoten), zu denen neben Pilzen, Pflanzen und Tieren auch Menschen zählen, wesentlich komplexere Ribosomen auf als Bakterien. Bei Eukaryoten lassen sich die Ribosomen zudem in zwei Typen unterteilen: diejenigen im Cytosol, dem Grossteil der Zelle, und jenen in den Mitochondrien, den Kraftwerken der Zellen. Mitochondrien kommen dabei nur bei Eukaryoten vor. 

Ribosomen dienen als Dechiffriergerät und sind eng in den Entstehungsprozess von Proteinen eingebunden. Jedes Ribosom besteht aus zwei Untereinheiten. Die kleinere Untereinheit decodiert mit Hilfe von Transfer-Ribonukleinsäuren (Transfer-RNS oder tRNS) den genetischen Code, der in Form einer Boten-RNS angeliefert wird. Die grössere Untereinheit fügt die durch die Transfer-RNS gelieferten Aminosäuren wie Perlen zu einer Protein-Kette zusammen.

Noch höhere Auflösung, noch mehr Details

Mitochondrielle Ribosomen sind besonders schwierig zu untersuchen, da sie nur in geringer Zahl auftreten und schwer zu isolieren sind. Bereits zu Jahresbeginn hatten die ETH-Forschenden die molekulare Struktur der grossen Untereinheit des Mitoribosoms von Säugetierzellen bis zu einer Auflösung von 4,9 Angström (weniger als 0,5 Nanometer) aufgeklärt (vgl. ETH News vom 23.1.14).

Allerdings war diese Auflösung nicht hoch genug, um zuverlässig ein atomares Modell der damals unbekannten Struktur zu bauen. Dies ist dem Team von ETH-Professor Nenad Ban jetzt gelungen. Sie konnten die gesamte Struktur bei 3,4 Angström (0,34 Nanometer) entschlüsseln. Ihre Erkenntnisse publizierten die Wissenschaftler soeben in der Fachzeitschrift «Nature».

Bei den Untersuchungen kamen die hochauflösende Kryo-Elektronenmikroskopie am Elektronenmikroskopie-Zentrum der ETH Zürich (ScopeM) und modernste Methoden der Massenspektrometrie zum Einsatz. Aufgrund jüngster technischer Fortschritte in der Kryo-Elektronenmikroskopie und der Entwicklung von Elektronenkameras, die selbst geringste Bewegungen korrigieren können, ist es seit kurzem möglich, Biomoleküle mit einer Auflösung von weniger als vier Angström aufzunehmen.

Wirkung von Antibiotika verbessern

Die neuen Bilder zeigen insbesondere die detaillierte Ansicht des Peptidyl-Transferase-Zentrums (PTC), also dem Ort, wo die Aminosäurebausteine verbunden werden. Die so synthetisierten Proteine durchqueren dann einen Tunnel, über welchen sie die grosse Untereinheit des Ribosoms schliesslich verlassen.

«Dieser Vorgang ist medizinisch von Bedeutung», sagt Basil Greber, Erstautor der Studie und Post-Doktorand in Nenad Bans Gruppe. Denn dieser Tunnel wird als Angriffspunkt für bestimmte Antibiotika genutzt: Das Antibiotikum setzt sich im Tunnel fest und hindert die frisch erzeugten Proteine daran, diesen zu verlassen. Allerdings sollen Antibiotika nur die Proteinsynthese bei den Ribosomen von Bakterien hemmen.

«Damit ein Antibiotikum beim Menschen eingesetzt werden kann, darf es nicht die menschlichen Ribosomen angreifen», erklärt Greber. Antibiotika dürfen die Proteinsynthese nur bei bakteriellen Ribosomen hemmen. Das Problem aber ist, dass mitochondrielle Ribosomen denen von Bakterien gleichen. Darum stören gewisse Antibiotika auch die Mitoribosomen. «Dies kann zu schwerwiegenden Nebenwirkungen führen.» Dank der Ergebnisse der ETH-Forschenden lassen sich künftig Antibiotika designen, die nur bakterielle und nicht mitochondrielle Ribosomen hemmen. Eine Grundvoraussetzung dafür, dass sie in der Klinik eingesetzt werden können.

Überraschende Entdeckung

Die ETH-Forschenden machten zudem eine unerwartete Entdeckung. Sie stellten fest, dass die Mitoribosomen Transfer-RNS auf zwei grundsätzlich verschiedene Arten einsetzen. Zum einen verwenden sie tRNS, um die richtige Aminosäure für die Peptidsynthese im PTC auszuwählen. Zum anderen ist eine tRNS, anders als bei allen übrigen Ribosomen, fest in die Struktur eingebaut. Dadurch wird eine Ribonukleinsäure (RNS), die im Laufe der Evolution verloren gegangen ist, funktionell ersetzt. Es war zwar seit längerem bekannt, dass mitochondrielle Ribosomen während ihrer Entwicklung neue Proteine in ihre Struktur integriert hatten. Erstmals wurde aber beobachtet, dass ein komplett neues RNS-Molekül verwendet wird. «Das zeigt, wie anpassungsfähig Mitoribosomen sind», betont Greber.

Bei seinen Forschungen steht das ETH-Team nun vor der grossen, bislang ungelösten Aufgabe, die Struktur der kleineren Untereinheit des mitochondriellen Ribosoms zu bestimmen. Da diese flexibler ist als die grosse Untereinheit, ist dies eine noch grössere Herausforderung.

Referenz

Greber BJ, Boehringer D, Leibundgut M, Bieri P, Leitner A, Schmitz N, Aebersold R, Ban N. The complete structure of the large subunit of the mammalian mitochondrial ribosome. Nature (2014) Published online 01 October 2014. doi: 10.1038/nature13895

Weitere Informationen:

https://www.ethz.ch/de/news-und-veranstaltungen/eth-news/news/2014/10/damit-anti...

Peter Rüegg | ETH Zürich

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Dichtes Gefäßnetz reguliert Bildung von Thrombozyten im Knochenmark
25.07.2017 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

nachricht Welcher Scotch ist es?
25.07.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Breitbandlichtquellen mit flüssigem Kern

Jenaer Forschern ist es gelungen breitbandiges Laserlicht im mittleren Infrarotbereich mit Hilfe von flüssigkeitsgefüllten optischen Fasern zu erzeugen. Mit den Fasern lieferten sie zudem experimentelle Beweise für eine neue Dynamik von Solitonen – zeitlich und spektral stabile Lichtwellen – die aufgrund der besonderen Eigenschaften des Flüssigkerns entsteht. Die Ergebnisse der Arbeiten publizierte das Jenaer Wissenschaftler-Team vom Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT), dem Fraunhofer-Insitut für Angewandte Optik und Feinmechanik, der Friedrich-Schiller-Universität Jena und des Helmholtz-Insituts im renommierten Fachblatt Nature Communications.

Aus einem ultraschnellen intensiven Laserpuls, den sie in die Faser einkoppeln, erzeugen die Wissenschaftler ein, für das menschliche Auge nicht sichtbares,...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

Gipfeltreffen der String-Mathematik: Internationale Konferenz StringMath 2017

24.07.2017 | Veranstaltungen

Von atmosphärischen Teilchen bis hin zu Polymeren aus nachwachsenden Rohstoffen

24.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

IT-Experten entdecken Chancen für den Channel-Markt

25.07.2017 | Unternehmensmeldung

Erst hot dann Schrott! – Elektronik-Überhitzung effektiv vorbeugen

25.07.2017 | Seminare Workshops

Dichtes Gefäßnetz reguliert Bildung von Thrombozyten im Knochenmark

25.07.2017 | Biowissenschaften Chemie