Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Grundlage für bessere Antibiotika

06.10.2014

Forscher der ETH Zürich entschlüsseln die Struktur der grossen Untereinheit des Ribosoms der Mitochondrien bis ins atomare Detail. Dies ermöglicht nie dagewesene Einblicke in die molekulare Architektur dieses Ribosoms und in die Wirkungsweise von Antibiotika.

Ein Team von Forschenden der ETH Zürich rund um die Professoren Nenad Ban und Ruedi Aebersold hat die hoch komplexe molekulare Struktur der Mitoribosomen, den Ribosomen von Mitochondrien, aufgeklärt. Ribosomen kommen in den Zellen aller lebenden Organismen vor.

Allerdings weisen höhere Organismen (Eukaryoten), zu denen neben Pilzen, Pflanzen und Tieren auch Menschen zählen, wesentlich komplexere Ribosomen auf als Bakterien. Bei Eukaryoten lassen sich die Ribosomen zudem in zwei Typen unterteilen: diejenigen im Cytosol, dem Grossteil der Zelle, und jenen in den Mitochondrien, den Kraftwerken der Zellen. Mitochondrien kommen dabei nur bei Eukaryoten vor. 

Ribosomen dienen als Dechiffriergerät und sind eng in den Entstehungsprozess von Proteinen eingebunden. Jedes Ribosom besteht aus zwei Untereinheiten. Die kleinere Untereinheit decodiert mit Hilfe von Transfer-Ribonukleinsäuren (Transfer-RNS oder tRNS) den genetischen Code, der in Form einer Boten-RNS angeliefert wird. Die grössere Untereinheit fügt die durch die Transfer-RNS gelieferten Aminosäuren wie Perlen zu einer Protein-Kette zusammen.

Noch höhere Auflösung, noch mehr Details

Mitochondrielle Ribosomen sind besonders schwierig zu untersuchen, da sie nur in geringer Zahl auftreten und schwer zu isolieren sind. Bereits zu Jahresbeginn hatten die ETH-Forschenden die molekulare Struktur der grossen Untereinheit des Mitoribosoms von Säugetierzellen bis zu einer Auflösung von 4,9 Angström (weniger als 0,5 Nanometer) aufgeklärt (vgl. ETH News vom 23.1.14).

Allerdings war diese Auflösung nicht hoch genug, um zuverlässig ein atomares Modell der damals unbekannten Struktur zu bauen. Dies ist dem Team von ETH-Professor Nenad Ban jetzt gelungen. Sie konnten die gesamte Struktur bei 3,4 Angström (0,34 Nanometer) entschlüsseln. Ihre Erkenntnisse publizierten die Wissenschaftler soeben in der Fachzeitschrift «Nature».

Bei den Untersuchungen kamen die hochauflösende Kryo-Elektronenmikroskopie am Elektronenmikroskopie-Zentrum der ETH Zürich (ScopeM) und modernste Methoden der Massenspektrometrie zum Einsatz. Aufgrund jüngster technischer Fortschritte in der Kryo-Elektronenmikroskopie und der Entwicklung von Elektronenkameras, die selbst geringste Bewegungen korrigieren können, ist es seit kurzem möglich, Biomoleküle mit einer Auflösung von weniger als vier Angström aufzunehmen.

Wirkung von Antibiotika verbessern

Die neuen Bilder zeigen insbesondere die detaillierte Ansicht des Peptidyl-Transferase-Zentrums (PTC), also dem Ort, wo die Aminosäurebausteine verbunden werden. Die so synthetisierten Proteine durchqueren dann einen Tunnel, über welchen sie die grosse Untereinheit des Ribosoms schliesslich verlassen.

«Dieser Vorgang ist medizinisch von Bedeutung», sagt Basil Greber, Erstautor der Studie und Post-Doktorand in Nenad Bans Gruppe. Denn dieser Tunnel wird als Angriffspunkt für bestimmte Antibiotika genutzt: Das Antibiotikum setzt sich im Tunnel fest und hindert die frisch erzeugten Proteine daran, diesen zu verlassen. Allerdings sollen Antibiotika nur die Proteinsynthese bei den Ribosomen von Bakterien hemmen.

«Damit ein Antibiotikum beim Menschen eingesetzt werden kann, darf es nicht die menschlichen Ribosomen angreifen», erklärt Greber. Antibiotika dürfen die Proteinsynthese nur bei bakteriellen Ribosomen hemmen. Das Problem aber ist, dass mitochondrielle Ribosomen denen von Bakterien gleichen. Darum stören gewisse Antibiotika auch die Mitoribosomen. «Dies kann zu schwerwiegenden Nebenwirkungen führen.» Dank der Ergebnisse der ETH-Forschenden lassen sich künftig Antibiotika designen, die nur bakterielle und nicht mitochondrielle Ribosomen hemmen. Eine Grundvoraussetzung dafür, dass sie in der Klinik eingesetzt werden können.

Überraschende Entdeckung

Die ETH-Forschenden machten zudem eine unerwartete Entdeckung. Sie stellten fest, dass die Mitoribosomen Transfer-RNS auf zwei grundsätzlich verschiedene Arten einsetzen. Zum einen verwenden sie tRNS, um die richtige Aminosäure für die Peptidsynthese im PTC auszuwählen. Zum anderen ist eine tRNS, anders als bei allen übrigen Ribosomen, fest in die Struktur eingebaut. Dadurch wird eine Ribonukleinsäure (RNS), die im Laufe der Evolution verloren gegangen ist, funktionell ersetzt. Es war zwar seit längerem bekannt, dass mitochondrielle Ribosomen während ihrer Entwicklung neue Proteine in ihre Struktur integriert hatten. Erstmals wurde aber beobachtet, dass ein komplett neues RNS-Molekül verwendet wird. «Das zeigt, wie anpassungsfähig Mitoribosomen sind», betont Greber.

Bei seinen Forschungen steht das ETH-Team nun vor der grossen, bislang ungelösten Aufgabe, die Struktur der kleineren Untereinheit des mitochondriellen Ribosoms zu bestimmen. Da diese flexibler ist als die grosse Untereinheit, ist dies eine noch grössere Herausforderung.

Referenz

Greber BJ, Boehringer D, Leibundgut M, Bieri P, Leitner A, Schmitz N, Aebersold R, Ban N. The complete structure of the large subunit of the mammalian mitochondrial ribosome. Nature (2014) Published online 01 October 2014. doi: 10.1038/nature13895

Weitere Informationen:

https://www.ethz.ch/de/news-und-veranstaltungen/eth-news/news/2014/10/damit-anti...

Peter Rüegg | ETH Zürich

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Feinste organische Partikel in der Atmosphäre sind häufiger glasartig als flüssige Öltröpfchen
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Darmflora beeinflusst das Altern
21.04.2017 | Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Immunzellen helfen bei elektrischer Reizleitung im Herzen

Erstmals elektrische Kopplung von Muskelzellen und Makrophagen im Herzen nachgewiesen / Erkenntnisse könnten neue Therapieansätze bei Herzinfarkt und Herzrhythmus-Störungen ermöglichen / Publikation am 20. April 2017 in Cell

Makrophagen, auch Fresszellen genannt, sind Teil des Immunsystems und spielen eine wesentliche Rolle in der Abwehr von Krankheitserregern und bei der...

Im Focus: Tief im Inneren von M87

Die Galaxie M87 enthält ein supermassereiches Schwarzes Loch von sechs Milliarden Sonnenmassen im Zentrum. Ihr leuchtkräftiger Jet dominiert das beobachtete Spektrum über einen Frequenzbereich von 10 Größenordnungen. Aufgrund ihrer Nähe, des ausgeprägten Jets und des sehr massereichen Schwarzen Lochs stellt M87 ein ideales Laboratorium dar, um die Entstehung, Beschleunigung und Bündelung der Materie in relativistischen Jets zu erforschen. Ein Forscherteam unter der Leitung von Silke Britzen vom MPIfR Bonn liefert Hinweise für die Verbindung von Akkretionsscheibe und Jet von M87 durch turbulente Prozesse und damit neue Erkenntnisse für das Problem des Ursprungs von astrophysikalischen Jets.

Supermassereiche Schwarze Löcher in den Zentren von Galaxien sind eines der rätselhaftesten Phänomene in der modernen Astrophysik. Ihr gewaltiger...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: Neu entdeckter Exoplanet könnte bester Kandidat für die Suche nach Leben sein

Supererde in bewohnbarer Zone um aktivitätsschwachen roten Zwergstern gefunden

Ein Exoplanet, der 40 Lichtjahre von der Erde entfernt einen roten Zwergstern umkreist, könnte in naher Zukunft der beste Ort sein, um außerhalb des...

Im Focus: Resistiver Schaltmechanismus aufgeklärt

Sie erlauben energiesparendes Schalten innerhalb von Nanosekunden, und die gespeicherten Informationen bleiben auf Dauer erhalten: ReRAM-Speicher gelten als Hoffnungsträger für die Datenspeicher der Zukunft.

Wie ReRAM-Zellen genau funktionieren, ist jedoch bisher nicht vollständig verstanden. Insbesondere die Details der ablaufenden chemischen Reaktionen geben den...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

3. Bionik-Kongress Baden-Württemberg

24.04.2017 | Veranstaltungen

Smart-Data-Forschung auf dem Weg in die wirtschaftliche Praxis

21.04.2017 | Veranstaltungen

Baukultur: Mehr Qualität durch Gestaltungsbeiräte

21.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

3. Bionik-Kongress Baden-Württemberg

24.04.2017 | Veranstaltungsnachrichten

1. Es­se­ner Ge­fahr­gut­ta­ge am 19.-20. Sep­tem­ber 2017 mit fach­be­glei­ten­der Aus­stel­lung

24.04.2017 | Seminare Workshops

Intelligenter Werkstattwagen unterstützt Mensch in der Produktion

21.04.2017 | HANNOVER MESSE