Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Grünes Energiemanagement - Wie sich Pflanzen auf die Lichtbedingungen einstellen

26.01.2010
Mit der Hilfe von Sonnenlicht können Pflanzen Kohlenhydrate synthetisieren, die von anderen Organismen aufgenommen werden. Dabei müssen sie sich aber auf unterschiedliche Lichtqualität und -intensität einstellen.

Der LMU-Biologe Professor Dario Leister und seine Kollegen haben diesen Vorgang in der Ackerschmalwand Arabidopsis thaliana untersucht. "Es hat sich gezeigt, dass die Photosynthese je nach Lichtbedingungen zwischen zwei Funktionsweisen wechseln kann, dem 'State 1' und 'State 2'", berichtet Leister.

"Vor einigen Jahren haben wir schon nachgewiesen, dass der Übergang von State 1 zu State 2 von dem Enzym STN7 abhängt, das Phosphatgruppen an bestimmte Proteine anhängt."

Nun konnten die Forscher zusammen mit italienischen Kollegen ein weiteres Enzym identifizieren, das diese Modifikation rückgängig macht - und damit das gesamte System wieder in den State 1 befördert. Diese Entdeckung ist nicht nur ein entscheidender Baustein für das Verständnis der Photosynthese, sondern könnte auch helfen, das Wachstum von Pflanzen zu verbessern. (PLoS Biology, 26. Januar 2010)

Die Photosynthese-Maschinerie ist in spezialisierte Membranen eingebettet. Diese sogenannten Thylakoide befinden sich in den Chloroplasten grüner Pflanzenteile und enthalten zwei Typen von Photosystemen, PSI und PSII. Jedes davon besteht aus einem Antennenkomplex und einem Reaktionszentrum. Der Antennenkomplex fängt Lichtenergie ein und überträgt sie auf das Reaktionszentrum. Dadurch werden Elektronen aus dem Chlorophyll-Molekül auf weitere Moleküle übertragen, was Energie für zelluläre Aktivitäten freisetzt.

Die zwei Photosysteme enthalten verschiedene Antennenkomplexe, LHCI für PSI und LHCII, das mit beiden Photosystemen zusammenarbeiten kann. Die beiden Photosysteme unterscheiden sich in ihrer Sensitivität gegenüber Licht in verschiedenen Wellenlängen: PSII reagiert besonders sensitiv auf eine Wellenlänge von 680 Nanometern (nm), das Absorptionsmaximum von PSI liegt bei 700 nm. "Die beiden Photosysteme arbeiten aber hintereinander", so Leister. "PSII überträgt angeregte Elektronen auf PSI und übermittelt dadurch Energie. Schließlich muss die Verteilung der Anregungsenergie zwischen den Photosystemen für eine optimale Wirkung ausgeglichen werden. Und das wird zum Teil durch einen Wechsel zwischen State 1 und State 2 erreicht."

Reagiert PSII besonders stark auf das einfallende Licht, werden innerhalb von Minuten Phosphatgruppen an einen Teil der LHCII-Moleküle angehängt. Damit geht das System über in den State 2, der mit der Wanderung phosphorylierter LHCII Moleküle zu PSI verbunden ist. "Wir haben vor Kurzem STN7 als das für die Übertragung der Phosphatgruppen an LHCII verantwortliche Enzym identifiziert", berichtet Leister. "Wir haben auch gezeigt, dass STN7 aktiviert wird, wenn eine Überlastung bei den Molekülen auftritt, die Elektronen auf PSI übertragen." Binden die phosphorylierten LHCII-Proteine an PSI, kann dieses mehr Licht nutzen und mehr Elektronen von PSII übernehmen - um so die Überlastung zu mildern und die Aktivitäten der zwei Photosysteme anzugleichen.

Der umgekehrte Übergang von State 2 zu State 1 hängt davon ab, dass die Phosphatgruppen von LHCII entfernt werden. Die Forscher konnten nun das verantwortliche Enzym, eine Phosphatase, identifizieren. "Es gab neun bekannte Phosphatasen in den Chloroplasten", berichtet Leister. "Wir haben zunächst die Gene, die die Bauanleitung dieser Enzyme tragen, inaktiviert, was aber keinen Effekt beim Übergang von State 2 zu State 1 zeigte." Das Team erweiterte die Suche und stieß dabei auf eine weitere Phosphatase, At4g27800. Ein Volltreffer: Die Forscher konnten bestätigen, dass dieses Protein, das sie in TAP38 umbenannten, mit den Thylakoiden assoziiert ist.

"Wir konnten zudem Mutanten identifizieren, denen dieses Protein fehlt", so Leister. "Diese Mutanten bleiben dauerhaft in State 2, und zwar unabhängig von den Lichtverhältnissen. Genau das ist ja auch zu erwarten, wenn TAP38 für die Entfernung der Phosphatgruppe zuständig ist." Tatsächlich wurden die Phosphatgruppen der modfizierten LHCII-Proteine erst entfernt, als reines TAP38 zugegeben wurde. Diese Entdeckung fügt nun einen wichtigen Baustein zum Verständnis davon, wie Pflanzen den Übergang von einem State zum anderen vornehmen.

Es gibt aber auch praktische Auswirkungen. Pflanzen, die bei Niedriglicht wachsen, bevorzugen State 2. "Ist das Gen für TAP38 inaktiviert, wachsen sie schneller als die normalen Pflanzen", erklärt Leister. "Das hat wahrscheinlich damit zu tun, dass das Licht zwischen beiden Photosystemen gleichmäßiger verteilt wird." Möglicherweise könnte dieser elegante Weg des Energiemanagements, das Leisters Team nun entschlüsselt hat, eines Tages auch helfen, die Energiekosten zu senken. Schließlich funktionieren Solaranlagen nach einem ähnlichen Prinzip. (suwe)

Publikation:
"Role of plastid protein phosphatase TAP38 in LHCII dephosphorylation and thylakoid electron flow"
Mathias Pribil, Paolo Pesaresi, Alexander Hertle, Roberto Barbato und Dario Leister

PloS Biology, 26. Januar 2010

Ansprechpartner:
Professor Dario Leister
Department Biologie I der Ludwig-Maximilians-Universität (LMU) München
Tel.: 089 / 2180 - 74550
Fax: 089 / 2180 - 74599;
E-Mail: leister@lrz.uni-muenchen.de

Luise Dirscherl | idw
Weitere Informationen:
http://www.botanik.bio.lmu.de/
http://www.botanik.bio.lmu.de/personen/professuren/leister/index.html

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie