Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wenn Grünalgen die Luft ausgeht: Hämoglobin sichert Überleben in sauerstofffreier Umgebung

14.06.2013
Einzeller brauchen Hämoglobin zum Überleben in sauerstofffreier Umgebung
PNAS: Rolle des Proteins und von Stickstoffmonoxid entdeckt

Wenn Grünalgen „keine Luft“ bekommen, werden sie überschüssige Energie durch die Produktion von Wasserstoff los. Biologen der Ruhr-Universität Bochum haben herausgefunden, wie die Einzeller bemerken, dass kein Sauerstoff verfügbar ist.


Ein Rasen aus Chlamydomonas-Zellen – ausgestrichen in Form einer Einzelzelle – auf einer Agarplatte, auf denen die Algen entweder für die Langzeitaufbewahrung oder für bestimmte Experimente kultiviert werden. Bild: AG Photobiotechnologie, RUB

Dafür brauchen sie den Botenstoff Stickstoffmonoxid und das Protein Hämoglobin, das bei Menschen in roten Blutkörperchen vorkommt. Mit Kollegen der UC Los Angeles berichtet das Bochumer Team in der Zeitschrift „PNAS“.

Hämoglobin – ein altes Protein im neuen Look

Im menschlichen Körper transportiert Hämoglobin Sauerstoff von der Lunge zu den Organen und sammelt dort entstehendes Kohlendioxid ein, um es zurück zur Lunge zu befördern. „Man weiß aber schon seit Jahren, dass es nicht das eine Hämoglobin gibt“, sagt Prof. Dr. Thomas Happe aus der AG Photobiotechnologie. Die Natur hat eine große Anzahl verwandter Proteine hervorgebracht, die unterschiedliche Funktionen erfüllen. Die Grünalge Chlamydomonas reinhardtii besitzt ein sogenanntes „verkürztes“ Hämoglobin, dessen Funktion bislang unbekannt war. Happes Team entschlüsselte seine Rolle für das Überleben in sauerstofffreier Umgebung.
In sauerstofffreier Umgebung schaltet die Grünalge spezielle Gene an

Wenn Chlamydomonas keinen Sauerstoff zur Verfügung hat, überträgt die Alge überschüssige Elektronen auf Protonen; es entsteht Wasserstoff (H2). „Damit das funktioniert, wirft die Grünalge ein bestimmtes Genprogramm an und bildet viele neue Proteine“, erklärt Happe. „Aber wie genau die Zellen überhaupt merken, dass der Sauerstoff fehlt, wussten wir noch nicht.“ Das Forscherteam suchte nach Genen, die besonders aktiv sind, wenn Grünalgen ohne Sauerstoff zurechtkommen müssen – und fand ein Gen, das den Bauplan für ein Hämoglobin enthält. In sauerstoffreicher Umgebung war dieses Gen hingegen komplett stillgelegt.

Ein Hämoglobin und Stickstoffmonoxid helfen Grünalgen beim Überleben

Das Hämoglobin-Protein und seine genetische Blaupause untersuchten die Wissenschaftler mit molekularbiologischen und biochemischen Analysen genauer. „Eins wurde sehr schnell klar“, sagt Dr. Anja Hemschemeier aus der AG Photobiotechnologie. „Wenn wir das Gen abschalten, können die Algen ohne Sauerstoff nur noch sehr schlecht wachsen.“ Aus früheren Studien ist bekannt, dass Hämoglobin in vielen Lebewesen Stickstoffmonoxid abfängt; denn eine Überdosis dieses Gases vergiftet die Zellen. Die Biologen testeten daher, ob Grünalgen, die nach genetischer Manipulation kein Hämoglobin mehr bilden können, an einer Stickstoffmonoxid-Vergiftung sterben. Ihre Erwartung: Den Grünalgen sollte es besser gehen, wenn sie das Gas auf anderem Wege abfangen. „Überraschenderweise konnten die Algen dann gar nicht mehr wachsen“, sagt Hemschemeier. Die Forscher folgerten, dass Hämoglobin und Stickstoffmonoxid unter sauerstofffreien Bedingungen gemeinsame Sache machen.

Stickstoffmonoxid signalisiert: „Kein Sauerstoff!“

Stickstoffmonoxid fungiert in vielen Lebewesen als Botenstoff – so scheinbar auch in Grünalgen. Bei Versuchen im Reagenzglas zeigte sich, dass das Grünalgen-Hämoglobin mit Stickstoffmonoxid interagiert. Führten die Forscher den Einzellern das Gas künstlich zu, wurden bestimmte Gene aktiv, die sonst nur in Abwesenheit von Sauerstoff „anspringen“. „Aus all dem können wir schließen, dass Chlamydomonas Stickstoffmonoxid nutzt, um innerhalb der Zelle das Signal ‚Kein Sauerstoff!‘ weiterzuleiten, und dass unser Hämoglobin an diesem Prozess beteiligt ist“, resümiert Happe. Die Rolle dieses Proteins in Grünalgen will sein Team weiter ergründen. Denn die Biologen entdeckten noch elf weitere Hämoglobin-Gene in dem Organismus. „Jetzt geht es erst richtig los“, meint der Bochumer. „Die Karte der Hämoglobin-Forschung hat noch viele weiße Flecken, die wir mit Inhalt füllen wollen. Dass ein Einzeller zwölf Hämoglobin-Proteine benötigt, spricht für fein abgestimmte Funktionen in der Zelle.“

Titelaufnahme

A. Hemschemeier, M. Düner, D. Casero, S.S. Merchant, M. Winkler, T. Happe (2013): Hypoxic survival requires a 2-on-2 hemoglobin in a process involving nitric oxide, Proceedings of the National Academy of Sciences, doi: 10.1073/pnas.1302592110

Weitere Informationen

Prof. Dr. Thomas Happe, AG Photobiotechnologie, Lehrstuhl Biochemie der Pflanzen, Fakultät für Biologie und Biotechnologie der Ruhr-Universität, 44780 Bochum, Tel. 0234/32-27026, E-Mail: thomas.happe@rub.de

Dr. Anja Hemschemeier, AG Photobiotechnologie, Lehrstuhl Biochemie der Pflanzen, Fakultät für Biologie und Biotechnologie der Ruhr-Universität, 44780 Bochum, Tel. 0234/32-24282, E-Mail: anja.hemschemeier@rub.de

Redaktion: Dr. Julia Weiler

Dr. Josef König | idw
Weitere Informationen:
http://www.ruhr-uni-bochum.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Sollbruchstellen im Rückgrat - Bioabbaubare Polymere durch chemische Gasphasenabscheidung
02.12.2016 | Gesellschaft Deutscher Chemiker e.V.

nachricht "Fingerabdruck" diffuser Protonen entschlüsselt
02.12.2016 | Universität Leipzig

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie