Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Großer Name für einen kleinen Wurm

02.07.2013
Tübinger Biologen benennen neu entdeckten Fadenwurm nach dem Physiker Max Planck

Eine ungewöhnliche postume Ehre für den Physiker Max Planck: Tübinger Biologen um Professor Ralf J. Sommer haben einen neu entdeckten Fadenwurm nach dem deutschen Nobelpreisträger benannt.


Je nach Ernährungsweise kann der Fadenwurm Pristionchus maxplancki seine Mundform ändern. ©

Pristionchus maxplancki ist damit die erste Art, die den Namen des 1947 verstorbenen Wissenschaftlers trägt. Der Fund aus Fernost verhilft den Forschern des Max-Planck-Instituts für Entwicklungsbiologie zu neuen Erkenntnissen über die vielfältigen Zusammenhänge zwischen Evolution, Genetik und Ökologie.

Als der japanische Biologe Natsumi Kanzaki und sein deutscher Kollege Matthias Herrmann in einem Eichenwald in der Provinz Fukushima einen Hirschkäfer aufsammelten, ahnten sie noch nicht, welche Überraschung das imposante Insekt verbarg: Denn am Körper des Käfers versteckte sich ein mikroskopisch kleiner Fadenwurm, der den Zoologen bisher gänzlich unbekannt war.

Die Neuentdeckung bekam den offiziellen Namen Pristionchus maxplancki, zu Ehren des theoretischen Physikers Max Planck (1858 – 1947). Der nur einen Millimeter lange Wurm ist damit der erste Organismus, der den Namen des Nobelpreisträgers aus Göttingen trägt.

An Herrmanns Heimatlabor am Max Planck Institut für Entwicklungsbiologie in Tübingen leitet Ralf Sommer eine Arbeitsgruppe für integrative Evolutionsbiologie, die sich ganz auf die unscheinbaren Wirbellosen der Gattung Pristionchus spezialisiert hat. Darunter ist auch der Biologe Erik Ragsdale, der ebenfalls in dieser Arbeitsgruppe tätig ist. Seine Aufgabe bei diesem Projekt bestand darin, die Pristionchus-Arten hinsichtlich ihrer Mundwerkzeuge zu identifizieren und zu charakterisieren.

Zusammen mit Kanzaki, der an einem forstwissenschaftlichen Institut nordöstlich von Tokio forscht, machten sich Sommers Mitarbeiter an eine Versuchsreihe mit dem Überraschungsfund aus Fernost und konnten so zweifelsfrei zeigen, dass der asiatische Wurm tatsächlich mit keiner der bekannten Arten der Gattung identisch ist. Die Ergebnisse dieser Untersuchungen haben die Forscher kürzlich in der Fachzeitschrift Zoological Science veröffentlicht; damit geht nun der Name Pristionchus maxplancki offiziell in die Annalen der Zoologie ein.

Ursprünglich hatte Sommer einen anderen Vertreter der Gattung, Pristionchus pacificus, von einem Forschungsaufenthalt in den USA ans Tübinger MPI gebracht, um die Entwicklungsvorgänge vom Ei über die Larvenstadien zum erwachsenen Tier zu studieren. Mittlerweile aber nehmen dort Spezialisten aus unterschiedlichsten Disziplinen den ganzen Familienclan der Gattung Pristionchus unter die Lupe. Genetiker, Ökologen, Neurowissenschaftler und Bioinformatiker untersuchen die Fadenwürmer aus ihren je ganz eigenen Blickwickeln, aber mit dem gemeinsamen Ziel, evolutionäre Zusammenhänge zu verstehen, losgelöst von den manchmal engen Grenzen der biologischen Unterdisziplinen.

Besonders achten sie beispielsweise auf die Mundformen, von der es bei jeder Pristionchus-Art zwei deutlich abgegrenzte Varianten gibt – schmal und lang oder breit und kurz. Dabei entscheiden nicht die Gene, ob ein Individuum schmal- oder breitmäulig daherkommt, sondern Umwelteinflüsse und Nahrungsangebot. Auch der neu entdeckte P. maxplancki kommt in diesen beiden Formen vor, zeigt aber zusätzlich einige charakteristische Besonderheiten in der Mundhöhle. Erik Ragsdale hofft nun, „dass uns P. maxplancki nun endlich mehr über die Rolle der unterschiedlichen Mundwerkzeuge im komplexen Lebenszyklus verrät.“

Dazu blicken die Forscher auch über den Tellerrand ihrer von Würmern bevölkerten Petrischalen hinaus. Denn Vertreter der Gattung Pristionchus leben in enger Gemeinschaft mit verschiedenen Käferarten. Die Würmer schaden ihrem Wirt dabei nicht, sie harren einfach in einem Ruhestadium aus, bis der Käfer stirbt. Die Trittbrettfahrer und ihre zahlreichen Nachkommen ernähren sich dann vom Käfer-Kadaver und den Pilzen und Bakterien, die auf den Überresten des Insekts wachsen. Dieser Lebensstil hat offenbar eine weite Verbreitung der unscheinbaren Tierchen begünstigt, denn die Pristionchus-Exemplare im Tübinger Wurm-Zoo stammen von Fundorten auf allen Kontinenten.

Sommers Mitarbeiter Matthias Herrmann, Spezialist für Biogeographie und unermüdlicher Sammelreisender, würde deshalb gerne wissen, wo die ursprüngliche Heimat der Gattung liegt und auf welchen Wegen sie die Welt erobert hat. Auch hier gibt der Neufund aus Japan wichtige Hinweise: Genetische Stammbäume mit DNA-Daten von P. maxplancki und einer weiteren neuentdeckten Art legen nahe, dass der Ursprung der Gattung in Südost-Asien liegt, in der Heimat des P. maxplancki also. Demnach hat sich Pristionchus von dort über die ganze Welt verbreitet – womöglich im Huckepack-Verfahren auf invasiven Käferarten.

In den kommenden Jahren will das Tübinger Team im Detail herausfinden, wie der komplexe Lebenszyklus, die Vielfalt der Formen der Würmer und die globale Verbreitung zusammenhängen – und so verstehen, wie die Evolution im Zusammenspiel von äußeren und inneren Einflüssen, von Genen und Umwelt, immer neue Formen hervorbringt.

Planck betonte stets die Bedeutung der exakten Beobachtung, des genauen Hinsehens, als den eigentlichen Kern allen wissenschaftlichen Arbeitens. Insofern ist es auch durchaus passend, dass nun ein im Verborgen lebender Wurm seinen Namen trägt, der dem aufmerksamen Beobachter grundlegende Prozesse der Natur erschließt.
Ansprechpartner
Nadja Winter
Max-Planck-Institut für Entwicklungsbiologie, Tübingen
Telefon: +49 7071 601-444
Fax: +49 7071 601-359
E-Mail: presse-eb@­tuebingen.mpg.de

Originalpublikation
Two New Species of Pristionchus (Nematoda: Diplogastridae) Support the Biogeographic Importance of Japan for the Evolution of the Genus Pristionchus and
 the Model System P. pacificus.

Zoological Science 30, August 2013. DOI: 10.2108/zsj.30.000

Nadja Winter | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/7435707/Pristionchus_maxplancki

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics