Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Grosse Sauerstoffkatastrophe: mehr Sauerstoff durch Vielzelligkeit

15.01.2013
Das Erscheinen von freiem Sauerstoff in der Erdatmosphäre führte zur Grossen Sauerstoffkatastrophe, bekannt als «Great Oxidation Event».
Auslöser waren die Sauerstoff produzierenden Cyanobakterien, die sich bereits vor 2,3 Milliarden Jahren zu Vielzellern entwickelten. Wie Evolutionsbiologen der Universität Zürich und Göteborg belegen, ging diese Vielzelligkeit mit der Sauerstoffzunahme einher und spielte somit für das heutige Leben auf der Erde eine wichtige Rolle.

Cyanobakterien gehören zu den ältesten Organismen auf der Erde. Sie kommen auch heute noch in Ozeanen, Gewässern und selbst in heissen Quellen vor. Indem sie Sauerstoff produzierten und sich zu Vielzellern entwickelten, spielten sie eine Schlüsselrolle für die Entstehung von Sauerstoff atmenden Organismen. Dies weist ein Team von Wissenschaftlern unter der Leitung von Evolutionsbiologen der Universität Zürich nach. Gemäss ihren Untersuchungen entwickelten Cyanobakterien die Vielzelligkeit rund eine Milliarde Jahre früher als Eukaryoten – Lebewesen mit einem Zellkern. Fast zeitgleich mit dem Auftauchen von vielzelligen Cyanobakterien beginnt sich Sauerstoff in den Ozeanen und der Erdatmosphäre anzureichern.

Viellzelliges Cyanobakterium
Bild: UZH


Nostochopis: vielzelliges Cyanobakterium mit Algen ähnlichem Wachstum
Bild: UZH

Vielzelligkeit bereits vor 2,3 Milliarden Jahren

Die Wissenschaftler analysierten die Stammesgeschichte lebender Cyanobakterien und kombinierten ihre Ergebnisse mit Daten fossiler Cyanobakterien. Gemäss den Resultaten von Bettina Schirrmeister und Kollegen entstand die Vielzelligkeit der Cynobakterien wesentlich früher, als bisher angenommen wurde. «Die Vielzelligkeit entwickelte sich relativ früh in der Geschichte der Cyanobakterien, vor mehr als 2,3 Milliarden Jahren», erläutert Schirrmeister ihre an der Universität Zürich verfasste Doktorarbeit.

Vielzelligkeit und Grosse Sauerstoffkatastrophe gehen einher

Gemäss den Wissenschaftlern entstand die Vielzelligkeit kurz bevor der freie Sauerstoff in den Ozeanen und der Atmosphäre angestiegen ist. Diese Häufung von freiem Sauerstoff wird als «Great Oxidation Event» bzw. Grosse Sauerstoffkatastrophe bezeichnet und gilt als erdgeschichtlich folgenreichstes Klimaereignis. Aufgrund ihrer Daten vermuten Schirrmeister und ihr Doktorvater Homayoun Bagheri einen Zusammenhang zwischen dem Entstehen der Vielzelligkeit und dem Ereignis. Gemäss Bagheri haben vielzellige Lebewesen oftmals einen effizienteren Stoffwechsel als einzellige. Die Forscher stellen daher die These auf, dass die neu entstandene Vielzelligkeit der Cyanobakterien eine Rolle bei der Auslösung der Grossen Sauerstoffkatastrophe gespielt hat.

Cyanobakterien besetzten freie Nischen

Die gesteigerte Sauerstoffproduktion brachte die ursprüngliche Erdatmosphäre zum Kippen. Da Sauerstoff für viele anaeroben Organismen giftig war, wurden viele anaerobe Bakterienarten verdrängt und ökologische Nischen frei. Die Forscher stellen im Anschluss an das einschneidende Klimaereignis viele neue Arten von vielzelligen Cyanobakterien fest und gehen davon aus, dass diese die frei gewordenen Lebensräume besetzt haben. «Morphologische Änderungen bei Kleinstlebewesen wie Bakterien waren in der Lage, die Umwelt grundlegend und in kaum vorstellbaren Mass zu beeinflussen», schliesst Schirrmeister.

Literatur:
Bettina E. Schirrmeister, Jurriaan M. de Vos, Alexandre Antonelli, Homayoun C. Bagheri. Evolution of multicellularity coincided with increased diversification of cyanobacteria and the Great Oxidation Event. PNAS Early Edition. January 14, 2013. doi: 10:1072/pnas.1209927110/-/DCSupplemental
Grosse Sauerstoffkatastrophe – Great Oxidation Event
Als «Great Oxidation Event» bzw. Grosse Sauerstoffkatastrophe wird der Zeitpunkt vor rund 2,3 Milliarden Jahren bezeichnet. Neu entstandener Sauerstoff konnte nicht mehr chemisch gebunden werden und begann sich als Sauerstoff (O2) im Meerwasser und in der Atmosphäre anzureichern.
Zuvor, in der Ur-Atmosphäre der Erde, war freier Sauerstoff nur in Spuren vorhanden. Alles Leben beruhte ausschliesslich auf anaeroben Prozessen, chemischen Vorgängen, die ohne Sauerstoff abliefen. Mit Entstehung der Cyanobakterien, die mit Hilfe von Licht Wasser oxidierten und als Stoffwechselprodukt Sauerstoff ausschieden, begannen sich die Lebensbedingungen auf der Erde allmählich zu verändern.

Kontakt:
Dr. Bettina Schirrmeister
School of Earth Sciences
University of Bristol
Tel. +44 117 3315239
E-Mail: bettina.schirrmeister@bristol.ac.uk
Dr. Homayoun Bagheri
Institut für Evolutionsbiologie und Umweltwissenschaften
Universität Zürich
Tel. +41 44 635 66 23
E-Mail: homayoun.bagheri@ieu.uzh.ch

Nathalie Huber | Universität Zürich
Weitere Informationen:
http://www.uzh.ch

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Ein Holodeck für Fliegen, Fische und Mäuse
21.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Wie Pflanzen ihr Gedächtnis vererben
21.08.2017 | Gregor Mendel Institut für Molekulare Pflanzenbiologie (GMI)

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

International führende Informatiker in Paderborn

21.08.2017 | Veranstaltungen

Wissenschaftliche Grundlagen für eine erfolgreiche Klimapolitik

21.08.2017 | Veranstaltungen

DGI-Forum in Wittenberg: Fake News und Stimmungsmache im Netz

21.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Im Neptun regnet es Diamanten: Forscherteam enthüllt Innenleben kosmischer Eisgiganten

21.08.2017 | Physik Astronomie

Ein Holodeck für Fliegen, Fische und Mäuse

21.08.2017 | Biowissenschaften Chemie

Institut für Lufttransportsysteme der TUHH nimmt neuen Cockpitsimulator in Betrieb

21.08.2017 | Verkehr Logistik