Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Große Augen – MDC-Forscher klären Ursache genetischer bedingter Kurzsichtigkeit auf

02.10.2015

„Großmutter, warum hast Du so große Augen?“ Diese Frage von Rotkäppchen aus dem gleichnamigen Grimm`schen Märchen hat nichts mit der Erkrankung zu tun, deren Ursache jetzt Dr. Annabel Christ und Prof. Thomas Willnow vom Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft (MDC) aufgeklärt haben. Es handelt sich dabei um eine seltene, genetisch bedingte Vergrößerung des Augapfels, Buphthalmie genannt. Die Betroffenen sind stark kurzsichtig (Developmental Cell, http://dx.doi.org/10.1016/j.devcel.2015.09.001)⃰⃰⃰⃰⃰⃰.

Die Augen von Babys sind schon fast so groß wie die eines Erwachsenen, denn das menschliche Auge wächst nach der Geburt nur noch wenig. Das ist bei Reptilien und Fischen anders. Deren Augen wachsen stetig, obwohl sie den gleichen Aufbau haben, wie die Augen der Säugetiere, also auch die des Menschen. Was das Wachstum des Säugerauges hemmt, war bisher noch unverstanden.


Bei Verlust des Rezeptors LRP2 verlängert sich der Augapfel (links) im Vergleich zu einem Auge mit intaktem LRP2-Rezeptor (rechts), histologische Präparate von Mäusen.

Bekannt war jedoch, dass ein zu starkes Wachstum des menschlichen Auges zu Kurzsichtigkeit führt, da der Augapfel zu lang wird und das ins Auge einfallende Licht nicht gezielt auf die Netzhaut treffen kann.

Dr. Christ, die als unabhängige Helmholtz-Stipendiatin (Helmholtz-Fellow) am MDC arbeitet, und Prof. Thomas Willnow haben jetzt einen Mechanismus aufgeklärt, welcher das Wachstum des menschlichen Auges kontrolliert und damit Kurzsichtigkeit verhindert.

Ausgangspunkt ihrer Studien war eine seltene Form starker Kurzsichtigkeit, welche bei Patienten mit einem Gendefekt in einem Rezeptor auftritt, der als LRP2-Rezeptor bezeichnet wird. Stark vergrößerte Augen konnten die Wissenschaftler ebenfalls in Mäusen beobachteten, denen LRP2 im Auge fehlt.

Gemeinsam mit Augenspezialisten des Toronto Western Research Institutes in Kanada, und der Freien Universität Berlin gingen Dr. Christ, Prof. Willnow und ihre Kollegen am MDC der Frage nach, warum ein Defekt von LRP2 zu unkontrolliertem Wachstum des Säugerauges führt.

In einer Studie, die jetzt die renommierte Fachzeitschrift Developmental Cell veröffentlicht hat, konnten sie zeigen, dass LPR2 in der Stammzellnische der Netzhaut sitzt. Dort sorgt LRP2 dafür, dass die Stammzellnische der Netzhaut im Säugerorganismus nicht überaktiv ist. Gegenspieler von LRP2 ist ein Signalmolekül, kurz SHH genannt (die Abk. steht für Sonic hedgehog), welches das Wachstum von Stammzellen anregt.

Seit langem ist bekannt, dass SHH die Embryonalentwicklung der Augen und die Ausbildung der Netzhaut mit ihren Stäbchen und Zäpfchen steuert. Dazu stimuliert es die Stammzellnische der Netzhaut. Im Säugerauge wird LRP2 am äußeren Rand der Netzhaut ausgebildet und fängt den Wachstumsfaktor SHH ab, bevor er die Spitze dieser Stammzellnische erreichen kann.

So werden die Stammzellen am Rande der menschlichen Netzhaut nicht zum Wachstum angeregt und das Augenwachstum kontrolliert. Bei Patienten mit schwerer, genetisch bedingter Kurzsichtigkeit ist LPR2 mutiert und kann das zur Stammzellnische wandernde SHH-Signalmolekül nicht mehr abfangen. SHH aktiviert dann die Zellen der Stammzellnische – der Augapfel vergrößert sich stark.

⃰ LRP2 acts as SHH clearance receptor to protect the retinal margin from mitogenic stimuli
Annabel Christ1*, Anna Christa1, Julia Klippert1, J. Corinna Eule2, Sebastian Bachmann3, Valerie A. Wallace4, Annette Hammes1, and Thomas E. Willnow1*
1Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, 2Small Animal Clinic, Free University Berlin, 14163 Berlin, and 3Institute for Vegetative Anatomy, Charité University Medicine Berlin, 10117 Berlin, Germany, and 4Toronto Western Research Institute, University Health Network, Toronto, M5T 2S8, Canada.
**Correspondence to:
Thomas E. Willnow; Email: willnow@mdc-berlin.de
Annabel Christ; Email: annabel.christ@mdc-berlin.de

Kontakt:
Barbara Bachtler
Pressestelle
Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft (MDC)
Robert-Rössle-Straße 10
13125 Berlin
Tel.: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de
http://www.mdc-berlin.de/de

Weitere Informationen:

https://www.mdc-berlin.de/45075914/de/news/2015/20151002-gro_e_augen___mdc-forsc...

Barbara Bachtler | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Dichtes Gefäßnetz reguliert Bildung von Thrombozyten im Knochenmark
25.07.2017 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

nachricht Welcher Scotch ist es?
25.07.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Breitbandlichtquellen mit flüssigem Kern

Jenaer Forschern ist es gelungen breitbandiges Laserlicht im mittleren Infrarotbereich mit Hilfe von flüssigkeitsgefüllten optischen Fasern zu erzeugen. Mit den Fasern lieferten sie zudem experimentelle Beweise für eine neue Dynamik von Solitonen – zeitlich und spektral stabile Lichtwellen – die aufgrund der besonderen Eigenschaften des Flüssigkerns entsteht. Die Ergebnisse der Arbeiten publizierte das Jenaer Wissenschaftler-Team vom Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT), dem Fraunhofer-Insitut für Angewandte Optik und Feinmechanik, der Friedrich-Schiller-Universität Jena und des Helmholtz-Insituts im renommierten Fachblatt Nature Communications.

Aus einem ultraschnellen intensiven Laserpuls, den sie in die Faser einkoppeln, erzeugen die Wissenschaftler ein, für das menschliche Auge nicht sichtbares,...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

Gipfeltreffen der String-Mathematik: Internationale Konferenz StringMath 2017

24.07.2017 | Veranstaltungen

Von atmosphärischen Teilchen bis hin zu Polymeren aus nachwachsenden Rohstoffen

24.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

IT-Experten entdecken Chancen für den Channel-Markt

25.07.2017 | Unternehmensmeldung

Erst hot dann Schrott! – Elektronik-Überhitzung effektiv vorbeugen

25.07.2017 | Seminare Workshops

Dichtes Gefäßnetz reguliert Bildung von Thrombozyten im Knochenmark

25.07.2017 | Biowissenschaften Chemie