Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Groß oder klein, das ist hier die Frage! Wie das Gen MCPH1 die Größe unseres Gehirns bestimmt

25.10.2011
Der Frage nach der Größe des Gehirns, einem entscheidenden Unterschied, der uns zum Menschen macht, gehen Forscher des Leibniz-Instituts für Altersforschung in Jena nach.

Sie untersuchten den Mechanismus, der zu Mikrozephalie führt, einer seltenen neuronalen Entwicklungsstörung, die mit einer enormen Reduktion des Gehirnvolumens verbunden ist. Der Verlust des MCPH1-Gens, das auch beim Menschen vorkommt, löst bei Mäusen Mikrozephalie aus.


Groß oder klein? Wie das Gen MCPH1 die Größe unseres Gehirns bestimmt.
"Grafik: K. Wagner / FLI"


Das Gen MCPH1 spielt eine wichtige Rolle bei der embryonalen Entwicklung des Gehirns. Es ist bei der Zellteilung für die präzise Ausrichtung der mitotischen Spindel notwendig und regelt den Teilungsmodus von Stammzellen. Bei der symmetrischen Zellteilung (a) sind beide Tochterzellen identisch und führen zur Vergrößerung des Stammzellen-Pools. Bei der asymmetrischen Teilung (b) unterscheiden sich die Tochterzellen in ihrem Phänotyp, da sie unterschiedliche Zellinhalte der Mutterzelle erben; dies gewährleistet den Erhalt des Stammzellen-Pools und die Bildung differenzierter Zellen. "Foto: Z.Q. Wang / FLI"

Fehlt das Gen, wird das Verhältnis symmetrischer zu asymmetrischer Zellteilung neuronaler Stammzellen gestört und der Pool an Vorläuferzellen, die zur Expansion der Großhirnrinde notwendig sind, vermindert. (Nature Cell Biology 2011, doi:10.1038/ncb2342)

Das entscheidende Merkmal, das uns Menschen von unseren nächsten Verwandten unterscheidet, ist die Größe und Komplexität des Gehirns. Besonderes Interesse gilt dabei dem zerebralen Kortex (Großhirnrinde), der uns u.a. die Wahrnehmung, das Denken und die Sprache ermöglicht. Im Verlauf der Evolution von Säugetieren hat sich die Gehirngröße dramatisch vergrößert; unser heutiges Gehirn wiegt im Durchschnitt etwa 1300 Gramm. Um die Hirnentwicklung und komplexe Funktionsweise besser verstehen zu können, ist ein möglicher Ansatz, Störungen oder defekte Mechanismen zu untersuchen, die zu einer fehlerhaften Hirnentwicklung führen.

Bei Individuen mit primärer Mikrozephalie (MCPH) ist das Gehirnvolumen um etwa zwei Drittel reduziert; durch den Verlust von Neuronen bei der Entwicklung des Gehirns sind diese Patienten geistig unterentwickelt. Als genetische Ursache werden Mutationen in einem Gen mit dem Namen MCPH1 angenommen. Das Proteinprodukt dieses Gens, Mikrozephalin, wurde bisher mit Aufgaben in der Zellzykluskontrolle und DNA-Schadensantwort/-reparatur oder der Regulierung der Chromosomenkondensation in Verbindung gebracht.

Welche Rolle MCPH1 bei der Entwicklung des Gehirns spielt, untersuchte jetzt eine Forschergruppe um Professor Zhao-Qi Wang, Leiter der Arbeitsgruppe "Genomische Stabilität" am Leibniz-Institut für Altersforschung - Fritz-Lipmann-Institut (FLI) in Jena. Den Forschern gelang der Nachweis, dass MCPH1 eine wichtige Rolle beim Zellteilungsprozess neuronaler Stammzellen spielt und für die korrekte Positionierung der mitotischen Spindel verantwortlich ist. Durch seinen Einfluss auf die Balance zwischen symmetrischer und asymmetrischer Zellteilung bei der Embryonalentwicklung des Gehirns ist MCPH1 ein entscheidender Faktor, der die Größe unseres Gehirns beeinflusst. Diese Forschungsergebnisse sind nun in der renommierten Fachzeitschrift "Nature Cell Biology" (doi: 10.1038/ncb2342) erschienen.

"Um die Funktion von MCPH1 bei Zellteilungsprozessen, speziell bei der Embryonalentwicklung des Gehirns, zu untersuchen, verwendeten wir neben ausgewählten Zelllinien Mäuse, denen das wichtige Gen MCPH1 fehlte", berichtet Prof. Wang vom Fritz-Lipmann-Institut in Jena. "Wir konnten zeigen, dass der Verlust von MCPH1 bei neugeborenen Mäusen zu einer Mikrozephalie, ähnlich der beim Menschen, führt und es zu einer spezifischen Abnahme der Dicke und seitlichen Ausdehnung des zerebralen Kortex, der Großhirnrinde, kommt. Das Vorhandensein bzw. Nichtvorhandensein von MCPH1 hat also einen entscheidenden Einfluss auf die gesunde Gehirnentwicklung", so Prof. Wang weiter.

Stammzellen (Vorläuferzellen) sind das Reservoir, aus dem im Lauf der Entwicklung die unterschiedlichsten Zell- und Gewebetypen eines Organismus hervorgehen. Neuronale Stammzellen teilen sich, um sich entweder zu vermehren (symmetrische Zellteilung) oder um differenzierte Zellen, wie z.B. Nervenzellen, zu bilden (asymmetrische Zellteilung). Bei der embryonalen Entwicklung des Gehirns von Säugetieren kommen beide Formen der Zellteilung nebeneinander vor. Der entsprechende Zeitpunkt des Umschaltens zur Bildung von Nervenzellen reguliert die Balance zwischen Vermehrung, Selbsterneuerung und Verbrauch des Vorrates an Stammzellen und somit das Wachstum und die Größe des Gehirns. "Fehlt MCPH1, dann tritt dieser Umschalt-Zeitpunkt verfrüht ein und die Balance zwischen symmetrischer und asymmetrischer Zellteilung der Vorläuferzellen wird gestört. Dieser vorzeitige Wechsel in die asymmetrische Zellteilung bewirkt schließlich, dass der Pool an Stammzellen, der für die Neubildung von Nervenzellen zur Verfügung steht, limitiert wird", unterstreicht Prof. Wang. "Das ist ein Grund, warum es bei der Mikrozephalie-Erkrankung zu einer enormen Reduktion des Gehirnvolumens kommt."

Warum begünstigt aber gerade der Verlust von MCPH1 die asymmetrische Zellteilung von neuronalen Stammzellen? "Im Evolutionsverlauf müssen neuronale Vorläuferzellen einen Mechanismus entwickelt haben, der durch die präzise Ausrichtung der Teilungsachse die Zellteilung kontrolliert", informiert Prof. Wang. "MCPH1 übernimmt diese wichtige Aufgabe und stellt die exakte Positionierung der mitotischen Spindel, die für die Trennung der Tochterchromosomen verantwortlich ist, sicher. Fehlt aber MCPH1, löst die falsche Ausrichtung einen vorzeitigen Eintritt in die Mitose aus, noch bevor die Reifung der Zentrosomen, die für die Ausbildung der Mitosespindel zuständig sind, abgeschlossen ist. Das führt schließlich zur Begünstigung der asymmetrischen Zellteilung und somit zur Reduktion des Stammzellen-Pools."

"Das neue Wissen um den entscheidenden Einfluss von MCPH1 bei der Aufrechterhaltung des Pools an neuronalen Stammzellen und Nervenzellen bei der Gehirnentwicklung und bei der Regulation von symmetrischer und asymmetrischer Zellteilung dürfte die Entwicklung neuer Strategien begünstigen, neurodegenerativen Krankheiten entgegenzuwirken", ist sich Prof. Wang sicher.

Kontakt

Dr. Kerstin Wagner
Leibniz-Institut für Altersforschung – Fritz-Lipmann-Institut (FLI)
Beutenbergstr. 11, 07745 Jena
Tel.: 03641-656378, Fax: 03641-656335, E-Mail: koordinator@fli-leibniz.de
Originalpublikation
Gruber R, Zhou Z, Sukchev M, Joerss T, Frappart P-O, Wang Z-Q: MCPH1 regulates the neuroprogenitor division mode by coupling the centrosomal cycle with mitotic entry through the Chk1-Cdc25 pathway. Nature Cell Biol. (2011), DOI: 10.1038/ncb2342.

Hintergrundinfo

Die primäre autosomal-rezessive Mikrozephalie (MCPH) ist eine seltene neuronale Entwicklungsstörung, gekennzeichnet durch einen verringerten Kopfumfang, der mindestens drei Standardabweichungen unter dem alters- sowie geschlechtsbezogenen Mittelwert liegt und mit einer Verringerung des Hirnvolumens einhergeht. Trotz reduzierten Volumens ist die neuronale Architektur des Gehirns normal. Bis dato wurden sieben Gen-loci kartiert (MCPH1-MCPH7) und fünf Gene identifiziert.

Das Gehirn des Menschen besteht zu 55% aus dem cerebralen Kortex (Großhirnrinde). Bei Mikrozephalie ist er vermindert ausgebildet, was sich in einer geistigen Behinderung niederschlägt. Liegt eine Mikrozephalie bereits bei Geburt vor, so spricht man von einer primären Mikrozephalie, tritt sie erst nach der Geburt auf, handelt es sich um eine sekundäre Mikrozephalie. Für die Entstehung einer primären Mikrozephalie gibt es nicht-genetische Ursachen (z.B. Alkoholkonsum, Toxoplasmose-Infektion) und genetische Ursachen (z.B. Abbildungsfehler des Chromosomsatzes oder Mutationen in einzelnen Genen).

Die symmetrische Zellteilung (proliferative Zellteilung) ist ein Vorgang, bei dem sich eine neuronale Vorläuferzelle (Stammzelle) in zwei gleiche teilt und damit den Pool an Vorläuferzellen erweitert. Sie führt zu einer seitlichen Expansion des Kortexes.

Bei der asymmetrischen Zellteilung (neurogene Zellteilung) entstehen aus einer Vorläuferzelle ein ausdifferenziertes Neuron und eine Vorläuferzelle. Sie führt zum radialen Wachstum, der kortikalen Verdickung.

Das Leibniz-Institut für Altersforschung – Fritz-Lipmann-Institut (FLI) in Jena ist das erste deutsche Forschungsinstitut, das sich seit 2004 der biomedizinischen Altersforschung widmet. Über 330 Mitarbeiter aus 25 Nationen forschen zu molekularen Mechanismen von Alterungsprozessen und altersbedingten Krankheiten. Näheres unter http://www.fli-leibniz.de.

Zur Leibniz-Gemeinschaft gehören zurzeit 87 Forschungsinstitute und Serviceeinrichtungen für die Forschung sowie drei assoziierte Mitglieder. Die Ausrichtung der Leibniz-Institute reicht von den Natur-, Ingenieur- und Umweltwissenschaften über die Wirtschafts-, Sozial- und Raumwissenschaften bis hin zu den Geisteswissenschaften. Leibniz-Institute arbeiten strategisch und themenorientiert an Fragestellungen von gesamtgesellschaftlicher Bedeutung. Bund und Länder fördern die Institute der Leibniz-Gemeinschaft daher gemeinsam. Näheres unter http://www.leibniz-gemeinschaft.de.

Friedrich-Schiller-Universität Jena (FSU): Näheres unter http://www.uni-jena.de

Dr. Kerstin Wagner | idw
Weitere Informationen:
http://www.fli-leibniz.de
http://www.uni-jena.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Auf der molekularen Streckbank
24.02.2017 | Technische Universität München

nachricht Sicherungskopie im Zentralhirn: Wie Fruchtfliegen ein Ortsgedächtnis bilden
24.02.2017 | Johannes Gutenberg-Universität Mainz

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: „Vernetzte Autonome Systeme“ von acatech und DFKI auf der CeBIT

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für Künstliche Intelligenz (DFKI) in Kooperation mit der Deutschen Messe AG vernetzte Autonome Systeme. In Halle 12 am Stand B 63 erwarten die Besucherinnen und Besucher unter anderem Roboter, die Hand in Hand mit Menschen zusammenarbeiten oder die selbstständig gefährliche Umgebungen erkunden.

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für...

Im Focus: Kühler Zwerg und die sieben Planeten

Erdgroße Planeten mit gemäßigtem Klima in System mit ungewöhnlich vielen Planeten entdeckt

In einer Entfernung von nur 40 Lichtjahren haben Astronomen ein System aus sieben erdgroßen Planeten entdeckt. Alle Planeten wurden unter Verwendung von boden-...

Im Focus: Mehr Sicherheit für Flugzeuge

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem totalen Triebwerksausfall zum Einsatz kommt, um den Piloten ein sicheres Gleiten zu einem Notlandeplatz zu ermöglichen, und ein Assistenzsystem für Segelflieger, das ihnen das Erreichen größerer Höhen erleichtert. Präsentiert werden sie von Prof. Dr.-Ing. Wolfram Schiffmann auf der Internationalen Fachmesse für Allgemeine Luftfahrt AERO vom 5. bis 8. April in Friedrichshafen.

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem...

Im Focus: HIGH-TOOL unterstützt Verkehrsplanung in Europa

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt sich bewerten, wie verkehrspolitische Maßnahmen langfristig auf Wirtschaft, Gesellschaft und Umwelt wirken. HIGH-TOOL ist ein frei zugängliches Modell mit Modulen für Demografie, Wirtschaft und Ressourcen, Fahrzeugbestand, Nachfrage im Personen- und Güterverkehr sowie Umwelt und Sicherheit. An dem nun erfolgreich abgeschlossenen EU-Projekt unter der Koordination des KIT waren acht Partner aus fünf Ländern beteiligt.

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt...

Im Focus: Zinn in der Photodiode: nächster Schritt zur optischen On-Chip-Datenübertragung

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium allein – die stoffliche Basis der Chip-Produktion – sind als Lichtquelle kaum geeignet. Jülicher Physiker haben nun gemeinsam mit internationalen Partnern eine Diode vorgestellt, die neben Silizium und Germanium zusätzlich Zinn enthält, um die optischen Eigenschaften zu verbessern. Das Besondere daran: Da alle Elemente der vierten Hauptgruppe angehören, sind sie mit der bestehenden Silizium-Technologie voll kompatibel.

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Aufbruch: Forschungsmethoden in einer personalisierten Medizin

24.02.2017 | Veranstaltungen

Österreich erzeugt erstmals Erdgas aus Sonnen- und Windenergie

24.02.2017 | Veranstaltungen

Big Data Centrum Ostbayern-Südböhmen startet Veranstaltungsreihe

23.02.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fraunhofer HHI auf dem Mobile World Congress mit VR- und 5G-Technologien

24.02.2017 | Messenachrichten

MWC 2017: 5G-Hauptstadt Berlin

24.02.2017 | Messenachrichten

Auf der molekularen Streckbank

24.02.2017 | Biowissenschaften Chemie