Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Größenverteilung von Nanopartikeln: eine Ursachenanalyse

14.06.2013
Chemiker und Physiker des Max-Planck-Institutes für Polymerforschung haben eine allgemeine Annahme über die Größenverteilung von Nanopartikeln ausgeräumt.

Beim Schuhkauf gilt, egal wie schön die Schuhe sind, wenn die Größe nicht passt, hilft alles nichts. Ganz ähnlich verhält es sich mit Nanopartikeln, die durch Lösungsmittelverdampfung gewonnen werden.

Sie gehen aus der Herstellung in höchster Reinheit und bester Qualität hervor und haben dennoch einen gravierenden Makel: Ihre Größenverteilung lässt sich nicht vollends beherrschen. Ein definiertes Ausmaß ist aber für die spätere Verwendung der Partikel, sei es als Medikamententransporter oder in intelligenten Beschichtungen, ausschlaggebend.

Eine interdisziplinäre wie internationale Forschungskollaboration am Max-Planck-Institut für Polymerforschung in Mainz konnte die bisher als Ursache für die Größenunterschiede angenommene Koaleszenz experimentell wie theoretisch ausschließen. Koaleszenz beschreibt die Neigung kolloidaler Tröpfchen miteinander zu verschmelzen.

Daniel Crespy, Leiter einer Forschungsgruppe im Arbeitskreis von Direktorin Katharina Landfester konnte erstmals nachweisen, dass die Vereinigung von Tröpfchen während ihrer Synthese nur geringfügig für die breite Größenverteilung der entstehenden Partikel verantwortlich ist. Sie sorgte nur in weniger als zehn Prozent aller untersuchten Fälle für eine Größenverschiebung.

„Die Ergebnisse dieser Untersuchung liefern einen signifikanten Beitrag, um eine der wichtigsten Methoden zur Herstellung von Nanopartikeln richtig zu verstehen,“ ordnet Daniel Crespy seine Forschungsresultate ein.

Um dies zu ermitteln, markierte der Chemiker das Ausgangsmaterial, spezifische Polymere, vor der Partikelfabrikation mit rotem, andere mit blauem Farbstoff. Bei der Herstellung wurden Polymere gemeinsam mit einem Lösungsmittel in Wasser zu einer Emulsion verarbeitet. Anschließend verdampfte das Lösungsmittel und zurückblieben die fertigen Partikel. Eine gängige Methode um Nanopartikel aller Art zu produzieren. Crespys Kniff dabei: Gab er rot und blau markierte Polymere gemeinsam in das Lösungsmittel, entstanden Partikel, die Anteile beider Farben zeigten. Die sogenannte Positiv-Kontrolle beweist, dass die Verschmelzung unter diesen Bedingungen Teil des Herstellungsprozesses ist. Auch die Negativ-Kontrolle zeigte: mischt man fertige rote und blaue Partikel liegt die Neigung zu Koaleszenz oder Aggregation bei null, denn Partikel mit beiden Farbstoffen traten nicht auf.

Was aber passiert, mischt man die Emulsionen aus Polymeren und Lösungsmitteln miteinander? Weniger als jedes zwölfte Teilchen, also etwa acht Prozent, waren sowohl Rot als auch Blau markiert, was ein eindeutiger Indikator für eine koaleszente Verschmelzung gewesen wäre.

Dazu gelang zum ersten Mal überhaupt die geringen Koaleszenzereignisse messtechnisch direkt zu visualisieren. Gemeinsam mit Kaloian Koynov, Physiker und Experte für spektroskopische Methoden am MPI-P, konnte Crespy die Vereinigungsprozesse von nanometergroßen Tröpfchen mit der Fluoreszenz-Korrelationsspektroskopie beobachten.

Die experimentellen Ergebnisse bestätigten sich schließlich in computergestützten Simulationen, die Davide Donadio, Leiter einer Max-Planck- Forschungsgruppe, durch Anwendung von Monte Carlo-Algorithmen ermittelte.

Crespy vermutet die Ursachen für die weitgestreute Größenverteilung im Verfahren der Lösungsmittelverdampfung von Emulsionen selbst.

Max-Planck-Institut für Polymerforschung

Das 1984 gegründete Max-Planck-Institut für Polymerforschung (MPI-P) zählt zu den international führenden Forschungszentren auf dem Gebiet der Polymerwissenschaft. Durch die Fokussierung auf so genannte weiche Materie und makromolekulare Materialien ist das Max-Planck-Institut für Polymerforschung mit seiner Forschungsausrichtung weltweit einzigartig. Mitarbeiterinnen und Mitarbeiter aus dem In- und Ausland arbeiten im Rahmen der Grundlagenforschung an der Herstellung und Charakterisierung von Polymeren und der Untersuchung ihrer physikalischen und chemischen Eigenschaften. Anfang 2013 sind insgesamt etwa 550 Personen am MPI-P beschäftigt: Die Belegschaft setzte sich aus 130 Wissenschaftlern, 165 Doktoranden und Diplomanden, 70 Gastwissenschaftlern und 190 technischen und Verwaltungsangestellten sowie Hilfskräften zusammen.

Weitere Informationen:

http://www.mpip-mainz.mpg.de/177306/PM6-13
- die Pressemitteilung auf der Website des MPI für Polymerforschung mit zusätzlichen Informationen
http://onlinelibrary.wiley.com/doi/10.1002/smll.201300372/abstract
- das Paper zur Pressemedlung: SMALL Vol.9 Issue 11

Stephan Imhof | Max-Planck-Institut
Weitere Informationen:
http://www.mpip-mainz.mpg.de/177306/PM6-13

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Forschungsteam entdeckt Mechanismus zur Aktivierung der Reproduktion bei Pflanzen
28.04.2017 | Universität Hamburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Chemnitz präsentiert weltweit einzigartige Pilotanlage für nachhaltigen Leichtbau

Wickelprinzip umgekehrt: Orbitalwickeltechnologie soll neue Maßstäbe in der großserientauglichen Fertigung komplexer Strukturbauteile setzen

Mitarbeiterinnen und Mitarbeiter des Bundesexzellenzclusters „Technologiefusion für multifunktionale Leichtbaustrukturen" (MERGE) und des Instituts für...

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Tag der Immunologie - 29. April 2017

28.04.2017 | Veranstaltungen

Kampf gegen multiresistente Tuberkulose – InfectoGnostics trifft MYCO-NET²-Partner in Peru

28.04.2017 | Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Über zwei Millionen für bessere Bordnetze

28.04.2017 | Förderungen Preise

Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers

28.04.2017 | Biowissenschaften Chemie

Wie Pflanzen ihre Zucker leitenden Gewebe bilden

28.04.2017 | Biowissenschaften Chemie