Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Grenzenloses Helfersyndrom - Methan erzeugendes Molekül kann auch DNA reparieren

02.07.2009
Die Archaea sind Einzeller, die neben den Bakterien und den höheren Organismen, den sogenannten Eukaryoten, ein eigenes Reich bilden.

Viele Arten leben unter extremen Bedingungen und verfügen - im Vergleich zu den Bakterien und Eukaryoten - über einzigartige biochemische Prozesse.

So können die methanogenen Archaea aus Kohlendioxid und Wasserstoff das Gas Methan bilden. Für die zugrundeliegende chemische Reaktion, die Reduktion, ist der sogenannte Kofaktor F0 bzw. Kofaktor F420 mitverantwortlich. Dabei handelt es sich um das kleine Molekül Deazaflavin, das bislang nur bei methanogenen Bakterien gefunden wurde und deshalb als Signaturmolekül für diese Spezies gilt. Ein Forscherteam um Professor Thomas Carell konnte jetzt allerdings zeigen, dass dieser Kofaktor auch in Eukaryoten weit verbreitet ist und dabei eine ganz andere Funktion übernimmt: Deazaflavin ist beteiligt an der Reparatur des Erbmoleküls DNA. (PNAS , 01. Juli 2009)

Katalysatoren ermöglichen chemische Reaktionen, ohne selbst Bestandteil zu sein. In den Zellen lebender Organismen übernehmen Proteine diese wichtige Funktion. Sie führen damit den Stoffumsatz durch, der für alle Lebensprozesse essentiell ist. Proteine sind etwa maßgeblich an der Zellatmung beteiligt, sie reduzieren zum Beispiel Sauerstoff zu Wasser und oxidieren die Nahrung zu Kohlendioxid. Dabei wird die Energie frei, die das Leben erst ermöglicht.

Diese Funktionen können Proteine nicht alleine durchführen, sondern sind auf kleine Hilfsmoleküle angewiesen. Diese werden in spezielle Taschen der Proteine eingelagert und übernehmen dann wesentliche Funktionen im Stoffumsatz. Viele dieser kleinen Helfer werden von den jeweiligen Organismen selber hergestellt. Andere - die Vitamine - müssen dagegen durch die Nahrung aufgenommen werden. Die schweren Vitaminmangelkrankheiten unterstreichen eindrucksvoll die wichtige Rolle der Hilfsmoleküle.

Methanogene Bakterien haben eine ganz besondere Aufgabe zu erfüllen, sie müssen Methan produzieren. Aus chemischer Sicht ein ganz besonders schwieriger Prozess. Die Methanproduktion ist vor allem im Zusammenhang mit der Erzeugung regenerativer Energien derzeit von großer Bedeutung. Methan ist aber auch ein wichtiges Treibhausgas.

Für die enzymatische Methanproduktion ist das kleine Molekül Deazaflavin mitverantwortlich, kurz Kofaktor F0 bzw. Kofaktor F420 genannt. Dieser Kofaktor wird in spezielle Proteine der methanogenen Bakterien eingelagert und ist in der Methanbiosynthese von essentieller Bedeutung. Kofaktor F0 bzw. F420 ist ein kleines Molekül, das bislang nur bei methanogenen Bakterien gefunden wurde. Es wird als Signaturmolekül für diese Spezies bezeichnet.

"Wir konnten nun zeigen, dass dieses Bild nicht der Wahrheit entspricht", sagt Carell. "Der Kofaktor ist wesentlich weiter in der Biosphäre verbreitet als bisher angenommen, er kommt vor allen Dingen auch in höheren Organismen vor, den sogenannten Eukaryoten. Hier übernimmt er allerdings eine ganz andere Funktion." Wie die Forscher zeigen konnten, ist der Kofaktor an DNA-Reparaturprozessen beteiligt, speziell an Reparaturprozessen von UV-Schäden des Erbmoleküls.

Pflanzen und viele andere Organismen, die intensivem Sonnenlicht ausgesetzt sind, müssen mit massiven Schäden in ihrem Genom fertigwerden. Die entsprechenden UV-Schäden müssen sie mit Hilfe komplexer Enzyme reparieren. Diese Enzyme, sogenannte Photolyasen, benötigen für die Reparatur den Kofaktor FAD, der auch als Vitamin B2 bekannt ist. Lange wurde vermutet, dass diese wichtigen Enzyme noch einen zweiten Kofaktor benötigen, der für die Energiebereitstellung zur DNA-Reparatur notwendig ist.

"Wir konnten nun zeigen, dass es sich bei diesem Kofaktor in vielen Organismen um besagtes F0 / F420 handelt", berichtet Carell. "Eindeutig nachgewiesen wurde der Kofaktor in den DNA-Reparaturenzymen von Drosophila melanogaster, der Fruchtfliege. Vor kurzem hat eine andere Forschergruppe sogar postuliert, dass F0 / F420 auch für die DNA-Reparatur in Pflanzen verantwortlich ist. Unser Bild von dem Kofaktor F420 als Signaturmolekül für methanogene Spezies hat sich daher grundlegend gewandelt: Der Kofaktor ist weit verbreitet und für die Methanbiosynthese wie auch für die DNA-Reparatur essentiell."

Professor Thomas Carell ist Sprecher des Exzellenzclusters "Center for Integrated Protein Science Munich" (CiPSM), in dessen Rahmen das Projekt durchgeführt wurde. (suwe)

Publikation:
"The archaeal cofactor F0 is a light-harvesting antenna chromophor in eukaryotes",
Andreas F. Glas, Melanie J. Maul, Sabine Schneider, Emine Kaya, Thomas Carell,
PNAS Online Early Edition, 01. Juli 2009
Ansprechpartner:
Professor Thomas Carell
Fakultät für Chemie und Pharmazie der LMU
Tel.: 089 / 2180 - 77750
Fax: 089 / 5160 - 77756
E-Mail: thomas.carell@cup.uni-muenchen.de

Luise Dirscherl | idw
Weitere Informationen:
http://www.uni-muenchen.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Spot auf die Maschinerie des Lebens
23.08.2017 | Max-Planck-Institut für die Physik des Lichts, Erlangen

nachricht Immunsystem kann durch gezielte Manipulation des Zellstoffwechsels reguliert werden
23.08.2017 | Medical University of Vienna

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Platz 2 für Helikopter-Designstudie aus Stade - Carbontechnologie-Studenten der PFH erfolgreich

Bereits lange vor dem Studienabschluss haben vier Studenten des PFH Hansecampus Stade ihr ingenieurwissenschaftliches Können eindrucksvoll unter Beweis gestellt: Malte Blask, Hagen Hagens, Nick Neubert und Rouven Weg haben bei einem internationalen Wettbewerb der American Helicopter Society (AHS International) den zweiten Platz belegt. Ihre Aufgabe war es, eine Designstudie für ein helikopterähnliches Fluggerät zu entwickeln, das 24 Stunden an einem Punkt in der Luft fliegen kann.

Die vier Kommilitonen sind im Studiengang Verbundwerkstoffe/Composites am Hansecampus Stade der PFH Private Hochschule Göttingen eingeschrieben. Seit elf...

Im Focus: Wissenschaftler entdecken seltene Ordnung von Elektronen in einem supraleitenden Kristall

In einem Artikel der aktuellen Ausgabe des Forschungsmagazins „Nature“ berichten Wissenschaftler vom Max-Planck-Institut für Chemische Physik fester Stoffe in Dresden von der Entdeckung eines seltenen Materiezustandes, bei dem sich die Elektronen in einem Kristall gemeinsam in einer Richtung bewegen. Diese Entdeckung berührt eine der offenen Fragestellungen im Bereich der Festkörperphysik: Was passiert, wenn sich Elektronen gemeinsam im Kollektiv verhalten, in sogenannten „stark korrelierten Elektronensystemen“, und wie „einigen sich“ die Elektronen auf ein gemeinsames Verhalten?

In den meisten Metallen beeinflussen sich Elektronen gegenseitig nur wenig und leiten Wärme und elektrischen Strom weitgehend unabhängig voneinander durch das...

Im Focus: Wie ein Bakterium von Methanol leben kann

Bei einem Bakterium, das Methanol als Nährstoff nutzen kann, identifizierten ETH-Forscher alle dafür benötigten Gene. Die Erkenntnis hilft, diesen Rohstoff für die Biotechnologie besser nutzbar zu machen.

Viele Chemiker erforschen derzeit, wie man aus den kleinen Kohlenstoffverbindungen Methan und Methanol grössere Moleküle herstellt. Denn Methan kommt auf der...

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Zukunft des Leichtbaus: Mehr als nur Material einsparen

23.08.2017 | Veranstaltungen

Logistikmanagement-Konferenz 2017

23.08.2017 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Oktober 2017

23.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Spot auf die Maschinerie des Lebens

23.08.2017 | Biowissenschaften Chemie

Die Sonne: Motor des Erdklimas

23.08.2017 | Physik Astronomie

Entfesselte Magnetkraft

23.08.2017 | Physik Astronomie