Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Grenzenloses Helfersyndrom - Methan erzeugendes Molekül kann auch DNA reparieren

02.07.2009
Die Archaea sind Einzeller, die neben den Bakterien und den höheren Organismen, den sogenannten Eukaryoten, ein eigenes Reich bilden.

Viele Arten leben unter extremen Bedingungen und verfügen - im Vergleich zu den Bakterien und Eukaryoten - über einzigartige biochemische Prozesse.

So können die methanogenen Archaea aus Kohlendioxid und Wasserstoff das Gas Methan bilden. Für die zugrundeliegende chemische Reaktion, die Reduktion, ist der sogenannte Kofaktor F0 bzw. Kofaktor F420 mitverantwortlich. Dabei handelt es sich um das kleine Molekül Deazaflavin, das bislang nur bei methanogenen Bakterien gefunden wurde und deshalb als Signaturmolekül für diese Spezies gilt. Ein Forscherteam um Professor Thomas Carell konnte jetzt allerdings zeigen, dass dieser Kofaktor auch in Eukaryoten weit verbreitet ist und dabei eine ganz andere Funktion übernimmt: Deazaflavin ist beteiligt an der Reparatur des Erbmoleküls DNA. (PNAS , 01. Juli 2009)

Katalysatoren ermöglichen chemische Reaktionen, ohne selbst Bestandteil zu sein. In den Zellen lebender Organismen übernehmen Proteine diese wichtige Funktion. Sie führen damit den Stoffumsatz durch, der für alle Lebensprozesse essentiell ist. Proteine sind etwa maßgeblich an der Zellatmung beteiligt, sie reduzieren zum Beispiel Sauerstoff zu Wasser und oxidieren die Nahrung zu Kohlendioxid. Dabei wird die Energie frei, die das Leben erst ermöglicht.

Diese Funktionen können Proteine nicht alleine durchführen, sondern sind auf kleine Hilfsmoleküle angewiesen. Diese werden in spezielle Taschen der Proteine eingelagert und übernehmen dann wesentliche Funktionen im Stoffumsatz. Viele dieser kleinen Helfer werden von den jeweiligen Organismen selber hergestellt. Andere - die Vitamine - müssen dagegen durch die Nahrung aufgenommen werden. Die schweren Vitaminmangelkrankheiten unterstreichen eindrucksvoll die wichtige Rolle der Hilfsmoleküle.

Methanogene Bakterien haben eine ganz besondere Aufgabe zu erfüllen, sie müssen Methan produzieren. Aus chemischer Sicht ein ganz besonders schwieriger Prozess. Die Methanproduktion ist vor allem im Zusammenhang mit der Erzeugung regenerativer Energien derzeit von großer Bedeutung. Methan ist aber auch ein wichtiges Treibhausgas.

Für die enzymatische Methanproduktion ist das kleine Molekül Deazaflavin mitverantwortlich, kurz Kofaktor F0 bzw. Kofaktor F420 genannt. Dieser Kofaktor wird in spezielle Proteine der methanogenen Bakterien eingelagert und ist in der Methanbiosynthese von essentieller Bedeutung. Kofaktor F0 bzw. F420 ist ein kleines Molekül, das bislang nur bei methanogenen Bakterien gefunden wurde. Es wird als Signaturmolekül für diese Spezies bezeichnet.

"Wir konnten nun zeigen, dass dieses Bild nicht der Wahrheit entspricht", sagt Carell. "Der Kofaktor ist wesentlich weiter in der Biosphäre verbreitet als bisher angenommen, er kommt vor allen Dingen auch in höheren Organismen vor, den sogenannten Eukaryoten. Hier übernimmt er allerdings eine ganz andere Funktion." Wie die Forscher zeigen konnten, ist der Kofaktor an DNA-Reparaturprozessen beteiligt, speziell an Reparaturprozessen von UV-Schäden des Erbmoleküls.

Pflanzen und viele andere Organismen, die intensivem Sonnenlicht ausgesetzt sind, müssen mit massiven Schäden in ihrem Genom fertigwerden. Die entsprechenden UV-Schäden müssen sie mit Hilfe komplexer Enzyme reparieren. Diese Enzyme, sogenannte Photolyasen, benötigen für die Reparatur den Kofaktor FAD, der auch als Vitamin B2 bekannt ist. Lange wurde vermutet, dass diese wichtigen Enzyme noch einen zweiten Kofaktor benötigen, der für die Energiebereitstellung zur DNA-Reparatur notwendig ist.

"Wir konnten nun zeigen, dass es sich bei diesem Kofaktor in vielen Organismen um besagtes F0 / F420 handelt", berichtet Carell. "Eindeutig nachgewiesen wurde der Kofaktor in den DNA-Reparaturenzymen von Drosophila melanogaster, der Fruchtfliege. Vor kurzem hat eine andere Forschergruppe sogar postuliert, dass F0 / F420 auch für die DNA-Reparatur in Pflanzen verantwortlich ist. Unser Bild von dem Kofaktor F420 als Signaturmolekül für methanogene Spezies hat sich daher grundlegend gewandelt: Der Kofaktor ist weit verbreitet und für die Methanbiosynthese wie auch für die DNA-Reparatur essentiell."

Professor Thomas Carell ist Sprecher des Exzellenzclusters "Center for Integrated Protein Science Munich" (CiPSM), in dessen Rahmen das Projekt durchgeführt wurde. (suwe)

Publikation:
"The archaeal cofactor F0 is a light-harvesting antenna chromophor in eukaryotes",
Andreas F. Glas, Melanie J. Maul, Sabine Schneider, Emine Kaya, Thomas Carell,
PNAS Online Early Edition, 01. Juli 2009
Ansprechpartner:
Professor Thomas Carell
Fakultät für Chemie und Pharmazie der LMU
Tel.: 089 / 2180 - 77750
Fax: 089 / 5160 - 77756
E-Mail: thomas.carell@cup.uni-muenchen.de

Luise Dirscherl | idw
Weitere Informationen:
http://www.uni-muenchen.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zirkuläre RNA wird in Proteine übersetzt
24.03.2017 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

nachricht Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen
24.03.2017 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise