Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Graphen: Perfekt in Unordnung

15.05.2012
Graphen ist ein Material aus reinem Kohlenstoff, das für technische Anwendungen interessant ist. Noch mehr Potenzial dürfte es bieten, wenn man seine regelmäßige Struktur gezielt verändert. Auf diesem Gebiet haben Würzburger Chemiker einen Fortschritt erzielt.

Im Prinzip ist Graphen nichts anderes als eine extrem dünne Folie, die aus einer einzigen Schicht von Kohlenstoffatomen besteht. Die Atome sind darin so angeordnet, dass sie ein Gitter mit einer sechseckigen, bienenwabenförmigen Struktur bilden. Lange wurde eine solche Struktur für instabil gehalten – bis sie dann im Jahr 2004 von Konstantin Novoselov und Andre Geim doch realisiert wurde. Dafür bekamen die beiden russischen Physiker 2010 den Nobelpreis verliehen.

Graphen zeichnet sich durch ungewöhnliche Eigenschaften aus: Es leitet Wärme und Strom besser als jedes andere Material; seine Zugfestigkeit ist rund 125-mal höher als die von Stahl. Zudem weist es eine geringe Reaktivität gegenüber typischen Reagenzien auf, es ist also chemisch sehr stabil. Dadurch wird Graphen interessant für die Grundlagenforschung und für Anwendungen. Unter anderem kann es Mikrochips leistungsfähiger machen; in Form von Graphen-Oxid eignet es sich zum Beispiel als Versiegelungsmaterial.

Defekte bringen neue Eigenschaften

Die Eigenschaften des Graphens ändern sich, wenn die Struktur des Moleküls Defekte aufweist. Solche Defekte treten bei der Herstellung von Graphen häufig auf: Die streng geordnete wabenförmige Sechseck-Struktur ist dann durch eingestreute Fünf- oder Siebenecke gestört, das ansonsten flache Graphen beult sich an diesen Stellen aus. „Wenn solche Defekte gezielt in die Struktur eingebracht werden können, erlangt man weitreichende Kontrolle über die optischen und elektromagnetischen Eigenschaften des Kohlenstoffmaterials“, sagt Professorin Anke Krüger vom Institut für Organische Chemie der Universität Würzburg.

Wie genau verändern solche Störstellen zum Beispiel die elektronischen und magnetischen Eigenschaften von Graphen? Für diese Frage interessiert sich Anke Krügers Forschungsgruppe. Um die Störstellen bestmöglich analysieren zu können, versuchen die Chemiker, sie passgenau zu synthetisieren – dabei sind sie umso zufriedener, je perfekter die geschaffene Unordnung ausfällt. Auf diesem Gebiet ist dem Würzburger Team jetzt ein Fortschritt gelungen, den es im Fachblatt „Chemical Communications“ beschreibt.

Störstelle im Labor synthetisiert

Anke Krüger und ihre Doktorandin Yvonne Kirchwehm haben Kohlenstoffatome zu drei miteinander verbundenen Fünf-Ringen verknüpft, an denen jeweils ein Sechs-Ring aus Kohlenstoffatomen hängt. Diese Struktur bezeichnen die Chemiker als Tribenzotriquinacen. Um diese Kern-Einheit in größere Graphenmodelle „einbauen“ zu können, muss sie an sehr schwer zugänglichen Positionen gezielt modifiziert werden. Diese äußerst knifflige Aufgabe haben die Würzburger Chemikerinnen nun durch eine geschickte Auswahl der Startmoleküle gelöst.

„Damit ist der Weg zu deutlich größeren und dem Graphen immer ähnlicheren Molekülen mit einer definierten Defektstruktur geebnet“, erklärt Yvonne Kirchwehm. Derartige Moleküle will die Arbeitsgruppe der Würzburger Chemieprofessorin als nächstes untersuchen – mit dem Ziel, den Auswirkungen von Krümmungsdefekten im Graphen und ihrem Anwendungspotential auf die Spur zu kommen.

Das Forschungsgebiet von Anke Krüger

Anke Krüger erforscht seit mehr als zehn Jahren neuartige Materialien aus Kohlenstoff. „Wir stellen diese Materialien her, charakterisieren ihre Eigenschaften und arbeiten an der kontrollierten Modifizierung ihrer Oberflächen, um neuartige Eigenschaften zu erzeugen“, sagt sie. Zu ihren Forschungsobjekten gehören neben Graphenmodellen auch so genannte Nanodiamanten und Kohlenstoff-Zwiebeln – letztere bestehen aus ineinander verschachtelten Fullerenen, das sind fußballförmige Molekülen aus Kohlenstoff.

“Ortho-methylated tribenzotriquinacenes – paving the way to curved carbon networks”, Yvonne Kirchwehm, Alexander Damme, Thomas Kupfer, Holger Braunschweig and Anke Krueger, Chemical Communications, 2012, 48, 1502-1504, DOI: 10.1039/C1CC14703J

Kontakt
Prof. Dr. Anke Krüger, Institut für Organische Chemie der Universität Würzburg,
T (0931) 31-85334, krueger@chemie.uni-wuerzburg.de

Gunnar Bartsch | idw
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Stottern: Stoppsignale im Gehirn verhindern flüssiges Sprechen
12.12.2017 | Max-Planck-Institut für Kognitions- und Neurowissenschaften

nachricht Undercover im Kampf gegen Tuberkulose
12.12.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Stabile Quantenbits

Physiker aus Konstanz, Princeton und Maryland schaffen ein stabiles Quantengatter als Grundelement für den Quantencomputer

Meilenstein auf dem Weg zum Quantencomputer: Wissenschaftler der Universität Konstanz, der Princeton University sowie der University of Maryland entwickeln ein...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

Hohe Heilungschancen bei Lymphomen im Kindesalter

07.12.2017 | Veranstaltungen

Der Roboter im Pflegeheim – bald Wirklichkeit?

05.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Mit Quantenmechanik zu neuen Solarzellen: Forschungspreis für Bayreuther Physikerin

12.12.2017 | Förderungen Preise

Stottern: Stoppsignale im Gehirn verhindern flüssiges Sprechen

12.12.2017 | Biowissenschaften Chemie

E-Mobilität: Neues Hybridspeicherkonzept soll Reichweite und Leistung erhöhen

12.12.2017 | Energie und Elektrotechnik