Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gold-Nanoantennen spüren Proteine auf

28.02.2012
Neue Methode zur Beobachtung von Protein-Molekülen mit Nanopartikeln aus Gold vorgestellt

Wissenschaftler der Johannes Gutenberg-Universität Mainz (JGU) haben eine neue Methode entwickelt, um einzelne Proteine zu beobachten. Die genaue Kenntnis der Dynamik von Proteinen ist wichtig, um die biologischen Funktionen zu verstehen, die auf molekularer Ebene ablaufen.


Die neue Mainzer Methode ermöglicht es, im Mikroskop mit Hilfe eines Gold-Nanopartikels einzelne Protein-Moleküle zu beobachten (skizzierte Abbildung: Gold-Nanoantenne mit Protein-Molekülen in Lila)
Quelle: Institut für Physikalische Chemie, JGU

Bisher wurden dazu die Proteine mit fluoreszierenden Stoffen markiert. Dadurch verändert man aber das Untersuchungsobjekt und nimmt somit Einfluss auf den biologischen Prozess, den man beobachten möchte. „Unsere Methode erlaubt es erstmals, beliebige einzelne Proteine ohne Markierung live zu verfolgen“, teilt Prof. Dr. Carsten Sönnichsen vom Institut für Physikalische Chemie der JGU mit. „Wir bekommen dadurch einen ganz neuen Einblick in molekulare Vorgänge und sehen zum Beispiel, wie sehr auf kleinster Ebene alles in ständiger Bewegung ist.“

Die Methode der Mainzer Chemiker um Carsten Sönnichsen beruht auf dem Einsatz von Nanopartikeln aus Gold. Die funkelnden Nanoantennen können einzelne, nicht markierte Proteine aufspüren und verändern dann ein klein wenig die Frequenz, also die Farbe. Diese kleine Farbänderung ist mit der Mainzer Technik zu sehen. „Technisch gesehen ist das ein enormer Sprung: Wir haben bei der Beobachtung von einzelnen Molekülen eine extrem hohe zeitliche Auflösung erreicht“, so Sönnichsen. So kann der dynamische Vorgang bei der Anbindung eines Protein-Moleküls beispielsweise auf Millisekunden genau verfolgt werden.

Die Möglichkeit, einzelne Protein-Moleküle zu beobachten, eröffnet auch Wege, um völlig Neues anzugehen. So zum Beispiel die Fluktuation der Belegungsdichte zu verfolgen oder den Vorgang der Protein-Adsorption zeitlich aufzulösen. „Wir sehen, wie sich Moleküle bewegen, wie sie irgendwo andocken oder wie sich Protein-Moleküle falten, das ist ein Blick in die molekulare Welt“, erklärt Irene Ament aus der Arbeitsgruppe von Sönnichsen. Die neue Technik könnte nicht nur für die Chemie, sondern auch für die Medizin und Biologie von Bedeutung sein.

Die Arbeit ist im Zusammenhang des Exzellenzclusters Molecularly Controlled Non-Equilibrium (MCNE) ein wichtiger Baustein zur Erforschung von Nicht-Gleichgewichts-Phänomenen auf molekularer Ebene. Gefördert wurde sie unter anderem durch den ERC Starting Grant „SingleSens".

Das Forschungsgebiet von Sönnichsen „Metall-Nanopartikel als optische Sonden in biologischen Systemen“ ist in das Mainzer Exzellenzcluster MCNE integriert, das den wichtigen Schritt in die abschließende Auswahlrunde der Bundesexzellenzinitiative geschafft hat.

Veröffentlichung:
Irene Ament, Janak Prasad, Andreas Henkel, Sebastian Schmachtel, and Carsten Sönnichsen
Single Unlabeled Protein Detection on Individual Plasmonic Nanoparticles
Nano Letters, 23. Januar 2012
DOI: 10.1021/nl204496g
Weitere Informationen:
Prof. Dr. Carsten Sönnichsen
Institut für Physikalische Chemie
Johannes Gutenberg-Universität Mainz (JGU)
D 55099 Mainz
Tel. +49 6131 39-20639 (Sekretariat) oder +49 6131 39-24313 (direkt)
Fax +49 6131 39-26747
E-Mail: carsten.soennichsen@uni-mainz.de

Petra Giegerich | idw
Weitere Informationen:
http://www.nano-bio-tech.de/
http://unibibliografie.ub.uni-mainz.de/opus/frontdoor.php?source_opus=7751

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics