Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Göttinger Forscher entdecken möglichen neuen Mechanismus für Strahlenschäden an der DNA

08.03.2010
Strahlentherapie: Gelöste Elektronen gefährlicher als freie Radikale?

Lange Zeit nahm man an, dass die Schäden an der menschlichen Erbsubstanz (DNA) durch Hochenergiestrahlung in erster Linie durch so genannte freie Radikale hervorgerufen werden.

Wissenschaftler an der Universität Göttingen und am Göttinger Max-Planck-Institut für Dynamik und Selbstorganisation haben nun herausgefunden, dass ein anderes Teilchen bei der Bestrahlung möglicherweise viel gefährlicher für die DNA ist: ein hydratisiertes, also von Wassermolekülen umgebenes Elektron. Ihre Erkenntnisse könnten Folgen haben für den Einsatz von Strahlentherapien im Kampf gegen Krebs. "Unsere Forschungsergebnisse könnten dazu führen, dass Strahlungsdosen in Zukunft möglicherweise neu bewertet werden müssen. Der neue DNA-Spaltungsmechanismus könnte dabei möglicherweise auch Auswirkungen auf die Dosierung der Strahlentherapie von Krebs haben," so der Leiter der Arbeitsgruppe Prof. Dr. Bernd Abel von der Universität Göttingen. Die Ergebnisse der Untersuchungen wurden jetzt in der renommierten Fachzeitschrift "Nature Chemistry" im Internet veröffentlicht.

45 Jahre nach der Entdeckung des freien gelösten Elektrons in Wasser gelang es den Forschern in Zusammenarbeit mit Kollegen aus Leipzig und Berlin, erstmals die bisher unbekannte Bindungsenergie des Elektrons zu messen. Das ist die Energie, die benötigt wird, um das Elektron wieder aus der Wasserumgebung herauszulösen. Wenn Hochenergiestrahlung auf die DNA einer Zelle trifft, werden lebenswichtige Zellbestandteile zerstört und die Zelle damit abgetötet - ein Mechanismus, der bei der Strahlentherapie zur Bekämpfung von Krebs ausgenutzt wird. Gleichzeitig schädigt die Strahlung aber auch gesunde Zellen.

Neben freien Radikalen entstehen bei der hochenergetischen Bestrahlung von Wasser in biologischem Gewebe in Wasser gelöste Elektronen an Grenzflächen wie zum Beispiel Membranen oder den Wänden von Biomolekülen. Bei ihren Untersuchungen stießen die Wissenschaftler erstmals auf eine bisher unbekannte Spezies: das nur teilweise gelöste Elektron an einer Wasser-Grenzfläche. Dessen Existenz und Lebensdauer wiesen sie erstmalig mit einer schnellen Kamera für kurzlebige reaktive Teilchen nach. Diese Elektronen sind offenbar deshalb so gefährlich, weil sie aufgrund ihrer "gerade passenden" (Bindungs-)Energie ebenfalls DNA spalten können. Da sie lange leben, können sie ihre schädigende Wirkung zudem besonders gut entfalten.

Prof. Abel ist Mitglied der Graduiertenschule für Neurowissenschaften und molekulare Biowissenschaften sowie Principal Investigator des Courant Forschungszentrums "Nanospektroskopie und Röntgenbildgebung" der Universität Göttingen. Beide Einrichtungen werden im Rahmen der Exzellenzinitiative des Bundes und der Länder gefördert. Seit 2008 ist er außerdem Professor für Physikalische Chemie und Reaktionsdynamik an der Universität Leipzig. Prof. Dr. Udo Buck und Dr. Manfred Faubel arbeiten am Göttinger Max-Planck-Institut für Dynamik und Selbstorganisation.

Originalveröffentlichung: K. R. Siefermann, Y. Liu, E. Lugovoy, O. Link, M. Faubel, U. Buck, B. Winter and B. Abel. Binding energies, lifetimes and implications of bulk and interface solvated electrons in water. Nature Chemistry. DOI: 10.1038/NCHEM.580.

Hinweis an die Redaktionen:
Fotos zum Thema stellen wir Ihnen auf Wunsch gerne zur Verfügung.
Kontaktadressen:
Prof. Dr. Bernd Abel
Georg-August-Universität Göttingen
Fakultät für Chemie
Institut für Physikalische Chemie
Tammanstraße 6, 37077 Göttingen
Telefon (0551) 39-3106, Fax (0551) 39-3150
E-Mail: babel@gwdg.de
Dr. Birgit Krummheuer
Max-Planck-Institut für Dynamik und Selbstorganisation
Presse- und Öffentlichkeitsarbeit
Bunsenstraße 10, 37073 Göttingen
Telefon (0551) 5176-668 und (0173) 3 95 86 25, Fax (0551) 5176-702
E-Mail: presse@ds.mpg.de

Dr. Bernd Ebeling | idw
Weitere Informationen:
http://www.chemie.uni-goettingen.de
http://www.pc-uni-leipzig.de
http://www.ds.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht UVB-Strahlung beeinflusst Verhalten von Stichlingen
13.12.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Mikroorganismen auf zwei Kontinenten studieren
13.12.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Materialinnovationen 2018 – Werkstoff- und Materialforschungskonferenz des BMBF

13.12.2017 | Veranstaltungen

Innovativer Wasserbau im 21. Jahrhundert

13.12.2017 | Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rest-Spannung trotz Megabeben

13.12.2017 | Geowissenschaften

Computermodell weist den Weg zu effektiven Kombinationstherapien bei Darmkrebs

13.12.2017 | Medizin Gesundheit

Winzige Weltenbummler: In Arktis und Antarktis leben die gleichen Bakterien

13.12.2017 | Geowissenschaften