Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Glücksgefühl senkt Blutdruck

15.10.2013
Ein mit dem Glückshormon Dopamin gesteuertes künstliches Gen-Modul produziert ein blutdrucksenkendes Mittel. Das eröffnet Wege für Therapien, die über das Unterbewusstsein ferngesteuert werden.

Das körpereigene Hormon Dopamin löst Glücksgefühle aus. Seine Bildung wird unter anderem angeregt durch die «Wohlfühl-Klassiker» Sex, Drogen oder Essen. Das Hirn gibt sich jedoch nicht zufrieden mit einem Kick; es erinnert sich an den Glückszustand und will ihn immer wieder erreichen. Dopamin beeinflusst also unsere Entscheidungen so, dass wir noch mehr Glücksmomente erleben können.

Biologische Bausteine neu verschaltet

Nun hat ein Forschungsteam um ETH-Professor Martin Fussenegger vom Departement Biosysteme in Basel einen Weg gefunden, das Dopaminsystem des Körpers therapeutisch zu nutzen. Die Forschenden haben ein neues genetisches Modul geschaffen, das sich über Dopamin steuern lässt. Der Glücksbotenstoff setzt dieses Modul dosisabhängig in Gang. Als Antwort auf eine Erhöhung des Dopaminpegels im Blut produziert das Modul einen gewünschten Wirkstoff.

Das Modul besteht aus mehreren biologischen Bauteilen des menschlichen Organismus, die zu einer künstlichen Signalkaskade zusammengeschaltet sind. Am Anfang der Kaskade stehen Dopaminrezeptoren als Sensoren. Als Endprodukt wird ein bestimmter Wirkstoff produziert: entweder ein Modelprotein namens SEAP oder das ANP, ein potentes blutdrucksenkendes Mittel. Diese Signalkaskade bauten die Forscher in menschliche Zellen, sogenannte HEK-Zellen, ein, von denen wiederum rund 100‘000 Stück in Kapseln eingebracht wurden. Diese implantierten die Forschenden in den Bauchraum von Mäusen.

Weibchenkontakt schaltet Modul an

Diese Tiere wurden anschliessend Situationen ausgesetzt, die ihr zentrales Belohnungssystem ansprechen – wie sexuelle Erregung, die ein Mäuseweibchen bei Männchen erzeugt, das Verabreichen der Droge Metamphetamin oder das Trinken von Zuckersirup. In all diesen Fällen reagierte das Mäusehirn mit einem «Glückszustand» und der Bildung von Dopamin, das über das periphere Nervensystem ins Blut ausgeschüttet wurde. Bei Mäusen, die unterschiedlich konzentrierten Zuckersirup erhielten, fiel der «Glückszustand» verschieden aus: Je stärker der Zucker verdünnt war, desto weniger Dopamin und dementsprechend weniger Wirkstoff zirkulierten im Blut. «Das zeigt, dass Dopamin unser Modul nicht einfach nur ein- oder ausschaltet, sondern dass es auf die Konzentration des Glückshormons reagiert», sagt Fussenegger.

In einem weiteren Schritt verknüpften die Wissenschaftler das Dopamin-Sensor-Modul mit der Produktion des Blutdrucksenkers ANP und implantierten die massgeschneiderten Zellen in den Bauchraum von männlichen Mäusen, die an Bluthochdruck litten. Die Gesellschaft zu einer weiblichen Maus löste bei den Männchen solche Glücksgefühle aus, sodass die durch Dopamin angeregte ANP-Produktion den Bluthochdruck korrigierte. Der Blutdruck pendelte sich gar auf einem normalen Niveau ein.

Serum-Dopamin mit Gehirn gekoppelt

Anhand ihrer Versuche konnten die Forscher zudem nachweisen, dass Dopamin bei entsprechenden Glücks-Situationen nicht nur im Gehirn gebildet wird, sondern auch in den engmaschig um Blutbahnen gewobenen Nerven des vegetativen Nervensystems, dem sogenannten Sympathikus. Hirn und Sympathikus sind miteinander gekoppelt, obwohl das Hirn «sein» Dopamin wegen der Blut-Hirn-Schranke nicht in den Körperkreislauf abgeben kann. Bekannt war bis anhin, dass Dopamin-Rezeptoren nicht nur im Gehirn vorkommen, sondern auch in Körpergewebe wie den Nieren, den Adrenalindrüsen oder an Blutgefässen.

Dopamin, das im Blutserum zirkuliert, reguliert die Atmung und das Blutzuckergleichgewicht. Lange vermutete man deshalb, das die Aktivitäten des Gehirn- und des Serum-Dopamins gekoppelt sind. Dass die Basler ETH-Forschenden nun diese Koppelung nachweisen konnten, vertieft das Verständnis für das Belohnungssystem des Körpers.

Essen als therapeutischer Input

Martin Fussenegger sagt, dass dank diesem Modul beispielsweise Essen als therapeutischer Input gesehen werden kann. «Mit dem Gennetzwerk klinken wir uns in das normale Belohnungssystem ein», sagt er. Gutes Essen beispielsweise löst Glücksgefühle aus, welche das Modul einschalten und in einen Ablauf eingreifen, der normalerweise nur durch das Unterbewusstsein gesteuert wird. So könnten tägliche Aktivitäten zu therapeutischen Interventionen genutzt werden.

Das Dopamin-Bluthochdruck-Model ist vorerst nur ein Prototyp. Die Wissenschaftler haben mit ihrer Arbeit bewiesen, dass sie auf diese Weise in das Belohnungssystem des Körpers eingreifen können. Es ist jedoch mehr als nur eine Idee oder ein Versuch in lebenden Zellen. «Es funktioniert im Mausmodell, das eine Krankheit des Menschen simuliert. Auch stammen die Bestandteile, mit denen wir das Modul erstellt haben, vom Menschen.» Ob und wann eine auf das Glückshormon abgestimmte Therapie auf den Markt kommt, ist jedoch ungewiss. Die Entwicklung vom Prototypen zu einem marktfähigen Produkt braucht Jahre oder gar Jahrzehnte.

Referenz:
Rössger K, Charpin-El-Hamri G & Fussenegger M. Reward-based hypertension control by a synthetic brain-dopamine interface. PNAS Early Edition, online 14th Oct. 2013.
Weitere Informationen:
http://www.ethlife.ethz.ch/archive_articles/131015_dopamin_netzwerk_per/index

Peter Rüegg | idw
Weitere Informationen:
http://www.ethz.ch

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Bakterieller Untermieter macht Blattnahrung für Käfer verdaulich
17.11.2017 | Max-Planck-Institut für chemische Ökologie

nachricht Neues Werkzeug für gezielten Proteinabbau
17.11.2017 | Max-Planck-Institut für biophysikalische Chemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Im Focus: «Kosmische Schlange» lässt die Struktur von fernen Galaxien erkennen

Die Entstehung von Sternen in fernen Galaxien ist noch weitgehend unerforscht. Astronomen der Universität Genf konnten nun erstmals ein sechs Milliarden Lichtjahre entferntes Sternensystem genauer beobachten – und damit frühere Simulationen der Universität Zürich stützen. Ein spezieller Effekt ermöglicht mehrfach reflektierte Bilder, die sich wie eine Schlange durch den Kosmos ziehen.

Heute wissen Astronomen ziemlich genau, wie sich Sterne in der jüngsten kosmischen Vergangenheit gebildet haben. Aber gelten diese Gesetzmässigkeiten auch für...

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Pflanzenvielfalt von Wäldern aus der Luft abbilden

Produktivität und Stabilität von Waldökosystemen hängen stark von der funktionalen Vielfalt der Pflanzengemeinschaften ab. UZH-Forschenden gelang es, die Pflanzenvielfalt von Wäldern durch Fernerkundung mit Flugzeugen in verschiedenen Massstäben zu messen und zu kartieren – von einzelnen Bäumen bis hin zu ganzen Artengemeinschaften. Die neue Methode ebnet den Weg, um zukünftig die globale Pflanzendiversität aus der Luft und aus dem All zu überwachen.

Ökologische Studien zeigen, dass die Pflanzenvielfalt zentral ist für das Funktionieren von Ökosys-temen. Wälder mit einer höheren funktionalen Vielfalt –...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungen

Roboter für ein gesundes Altern: „European Robotics Week 2017“ an der Frankfurt UAS

17.11.2017 | Veranstaltungen

Börse für Zukunftstechnologien – Leichtbautag Stade bringt Unternehmen branchenübergreifend zusammen

17.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungsnachrichten

IHP präsentiert sich auf der productronica 2017

17.11.2017 | Messenachrichten

Roboter schafft den Salto rückwärts

17.11.2017 | Innovative Produkte