Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Glücksgefühl senkt Blutdruck

15.10.2013
Ein mit dem Glückshormon Dopamin gesteuertes künstliches Gen-Modul produziert ein blutdrucksenkendes Mittel. Das eröffnet Wege für Therapien, die über das Unterbewusstsein ferngesteuert werden.

Das körpereigene Hormon Dopamin löst Glücksgefühle aus. Seine Bildung wird unter anderem angeregt durch die «Wohlfühl-Klassiker» Sex, Drogen oder Essen. Das Hirn gibt sich jedoch nicht zufrieden mit einem Kick; es erinnert sich an den Glückszustand und will ihn immer wieder erreichen. Dopamin beeinflusst also unsere Entscheidungen so, dass wir noch mehr Glücksmomente erleben können.

Biologische Bausteine neu verschaltet

Nun hat ein Forschungsteam um ETH-Professor Martin Fussenegger vom Departement Biosysteme in Basel einen Weg gefunden, das Dopaminsystem des Körpers therapeutisch zu nutzen. Die Forschenden haben ein neues genetisches Modul geschaffen, das sich über Dopamin steuern lässt. Der Glücksbotenstoff setzt dieses Modul dosisabhängig in Gang. Als Antwort auf eine Erhöhung des Dopaminpegels im Blut produziert das Modul einen gewünschten Wirkstoff.

Das Modul besteht aus mehreren biologischen Bauteilen des menschlichen Organismus, die zu einer künstlichen Signalkaskade zusammengeschaltet sind. Am Anfang der Kaskade stehen Dopaminrezeptoren als Sensoren. Als Endprodukt wird ein bestimmter Wirkstoff produziert: entweder ein Modelprotein namens SEAP oder das ANP, ein potentes blutdrucksenkendes Mittel. Diese Signalkaskade bauten die Forscher in menschliche Zellen, sogenannte HEK-Zellen, ein, von denen wiederum rund 100‘000 Stück in Kapseln eingebracht wurden. Diese implantierten die Forschenden in den Bauchraum von Mäusen.

Weibchenkontakt schaltet Modul an

Diese Tiere wurden anschliessend Situationen ausgesetzt, die ihr zentrales Belohnungssystem ansprechen – wie sexuelle Erregung, die ein Mäuseweibchen bei Männchen erzeugt, das Verabreichen der Droge Metamphetamin oder das Trinken von Zuckersirup. In all diesen Fällen reagierte das Mäusehirn mit einem «Glückszustand» und der Bildung von Dopamin, das über das periphere Nervensystem ins Blut ausgeschüttet wurde. Bei Mäusen, die unterschiedlich konzentrierten Zuckersirup erhielten, fiel der «Glückszustand» verschieden aus: Je stärker der Zucker verdünnt war, desto weniger Dopamin und dementsprechend weniger Wirkstoff zirkulierten im Blut. «Das zeigt, dass Dopamin unser Modul nicht einfach nur ein- oder ausschaltet, sondern dass es auf die Konzentration des Glückshormons reagiert», sagt Fussenegger.

In einem weiteren Schritt verknüpften die Wissenschaftler das Dopamin-Sensor-Modul mit der Produktion des Blutdrucksenkers ANP und implantierten die massgeschneiderten Zellen in den Bauchraum von männlichen Mäusen, die an Bluthochdruck litten. Die Gesellschaft zu einer weiblichen Maus löste bei den Männchen solche Glücksgefühle aus, sodass die durch Dopamin angeregte ANP-Produktion den Bluthochdruck korrigierte. Der Blutdruck pendelte sich gar auf einem normalen Niveau ein.

Serum-Dopamin mit Gehirn gekoppelt

Anhand ihrer Versuche konnten die Forscher zudem nachweisen, dass Dopamin bei entsprechenden Glücks-Situationen nicht nur im Gehirn gebildet wird, sondern auch in den engmaschig um Blutbahnen gewobenen Nerven des vegetativen Nervensystems, dem sogenannten Sympathikus. Hirn und Sympathikus sind miteinander gekoppelt, obwohl das Hirn «sein» Dopamin wegen der Blut-Hirn-Schranke nicht in den Körperkreislauf abgeben kann. Bekannt war bis anhin, dass Dopamin-Rezeptoren nicht nur im Gehirn vorkommen, sondern auch in Körpergewebe wie den Nieren, den Adrenalindrüsen oder an Blutgefässen.

Dopamin, das im Blutserum zirkuliert, reguliert die Atmung und das Blutzuckergleichgewicht. Lange vermutete man deshalb, das die Aktivitäten des Gehirn- und des Serum-Dopamins gekoppelt sind. Dass die Basler ETH-Forschenden nun diese Koppelung nachweisen konnten, vertieft das Verständnis für das Belohnungssystem des Körpers.

Essen als therapeutischer Input

Martin Fussenegger sagt, dass dank diesem Modul beispielsweise Essen als therapeutischer Input gesehen werden kann. «Mit dem Gennetzwerk klinken wir uns in das normale Belohnungssystem ein», sagt er. Gutes Essen beispielsweise löst Glücksgefühle aus, welche das Modul einschalten und in einen Ablauf eingreifen, der normalerweise nur durch das Unterbewusstsein gesteuert wird. So könnten tägliche Aktivitäten zu therapeutischen Interventionen genutzt werden.

Das Dopamin-Bluthochdruck-Model ist vorerst nur ein Prototyp. Die Wissenschaftler haben mit ihrer Arbeit bewiesen, dass sie auf diese Weise in das Belohnungssystem des Körpers eingreifen können. Es ist jedoch mehr als nur eine Idee oder ein Versuch in lebenden Zellen. «Es funktioniert im Mausmodell, das eine Krankheit des Menschen simuliert. Auch stammen die Bestandteile, mit denen wir das Modul erstellt haben, vom Menschen.» Ob und wann eine auf das Glückshormon abgestimmte Therapie auf den Markt kommt, ist jedoch ungewiss. Die Entwicklung vom Prototypen zu einem marktfähigen Produkt braucht Jahre oder gar Jahrzehnte.

Referenz:
Rössger K, Charpin-El-Hamri G & Fussenegger M. Reward-based hypertension control by a synthetic brain-dopamine interface. PNAS Early Edition, online 14th Oct. 2013.
Weitere Informationen:
http://www.ethlife.ethz.ch/archive_articles/131015_dopamin_netzwerk_per/index

Peter Rüegg | idw
Weitere Informationen:
http://www.ethz.ch

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Einzelne Proteine bei der Arbeit beobachten
08.12.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Herz-Bindegewebe unter Strom
08.12.2016 | Universitäts-Herzzentrum Freiburg - Bad Krozingen

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einzelne Proteine bei der Arbeit beobachten

08.12.2016 | Biowissenschaften Chemie

Intelligente Filter für innovative Leichtbaukonstruktionen

08.12.2016 | Messenachrichten

Seminar: Ströme und Spannungen bedarfsgerecht schalten!

08.12.2016 | Seminare Workshops