Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Glücksgefühl senkt Blutdruck

15.10.2013
Ein mit dem Glückshormon Dopamin gesteuertes künstliches Gen-Modul produziert ein blutdrucksenkendes Mittel. Das eröffnet Wege für Therapien, die über das Unterbewusstsein ferngesteuert werden.

Das körpereigene Hormon Dopamin löst Glücksgefühle aus. Seine Bildung wird unter anderem angeregt durch die «Wohlfühl-Klassiker» Sex, Drogen oder Essen. Das Hirn gibt sich jedoch nicht zufrieden mit einem Kick; es erinnert sich an den Glückszustand und will ihn immer wieder erreichen. Dopamin beeinflusst also unsere Entscheidungen so, dass wir noch mehr Glücksmomente erleben können.

Biologische Bausteine neu verschaltet

Nun hat ein Forschungsteam um ETH-Professor Martin Fussenegger vom Departement Biosysteme in Basel einen Weg gefunden, das Dopaminsystem des Körpers therapeutisch zu nutzen. Die Forschenden haben ein neues genetisches Modul geschaffen, das sich über Dopamin steuern lässt. Der Glücksbotenstoff setzt dieses Modul dosisabhängig in Gang. Als Antwort auf eine Erhöhung des Dopaminpegels im Blut produziert das Modul einen gewünschten Wirkstoff.

Das Modul besteht aus mehreren biologischen Bauteilen des menschlichen Organismus, die zu einer künstlichen Signalkaskade zusammengeschaltet sind. Am Anfang der Kaskade stehen Dopaminrezeptoren als Sensoren. Als Endprodukt wird ein bestimmter Wirkstoff produziert: entweder ein Modelprotein namens SEAP oder das ANP, ein potentes blutdrucksenkendes Mittel. Diese Signalkaskade bauten die Forscher in menschliche Zellen, sogenannte HEK-Zellen, ein, von denen wiederum rund 100‘000 Stück in Kapseln eingebracht wurden. Diese implantierten die Forschenden in den Bauchraum von Mäusen.

Weibchenkontakt schaltet Modul an

Diese Tiere wurden anschliessend Situationen ausgesetzt, die ihr zentrales Belohnungssystem ansprechen – wie sexuelle Erregung, die ein Mäuseweibchen bei Männchen erzeugt, das Verabreichen der Droge Metamphetamin oder das Trinken von Zuckersirup. In all diesen Fällen reagierte das Mäusehirn mit einem «Glückszustand» und der Bildung von Dopamin, das über das periphere Nervensystem ins Blut ausgeschüttet wurde. Bei Mäusen, die unterschiedlich konzentrierten Zuckersirup erhielten, fiel der «Glückszustand» verschieden aus: Je stärker der Zucker verdünnt war, desto weniger Dopamin und dementsprechend weniger Wirkstoff zirkulierten im Blut. «Das zeigt, dass Dopamin unser Modul nicht einfach nur ein- oder ausschaltet, sondern dass es auf die Konzentration des Glückshormons reagiert», sagt Fussenegger.

In einem weiteren Schritt verknüpften die Wissenschaftler das Dopamin-Sensor-Modul mit der Produktion des Blutdrucksenkers ANP und implantierten die massgeschneiderten Zellen in den Bauchraum von männlichen Mäusen, die an Bluthochdruck litten. Die Gesellschaft zu einer weiblichen Maus löste bei den Männchen solche Glücksgefühle aus, sodass die durch Dopamin angeregte ANP-Produktion den Bluthochdruck korrigierte. Der Blutdruck pendelte sich gar auf einem normalen Niveau ein.

Serum-Dopamin mit Gehirn gekoppelt

Anhand ihrer Versuche konnten die Forscher zudem nachweisen, dass Dopamin bei entsprechenden Glücks-Situationen nicht nur im Gehirn gebildet wird, sondern auch in den engmaschig um Blutbahnen gewobenen Nerven des vegetativen Nervensystems, dem sogenannten Sympathikus. Hirn und Sympathikus sind miteinander gekoppelt, obwohl das Hirn «sein» Dopamin wegen der Blut-Hirn-Schranke nicht in den Körperkreislauf abgeben kann. Bekannt war bis anhin, dass Dopamin-Rezeptoren nicht nur im Gehirn vorkommen, sondern auch in Körpergewebe wie den Nieren, den Adrenalindrüsen oder an Blutgefässen.

Dopamin, das im Blutserum zirkuliert, reguliert die Atmung und das Blutzuckergleichgewicht. Lange vermutete man deshalb, das die Aktivitäten des Gehirn- und des Serum-Dopamins gekoppelt sind. Dass die Basler ETH-Forschenden nun diese Koppelung nachweisen konnten, vertieft das Verständnis für das Belohnungssystem des Körpers.

Essen als therapeutischer Input

Martin Fussenegger sagt, dass dank diesem Modul beispielsweise Essen als therapeutischer Input gesehen werden kann. «Mit dem Gennetzwerk klinken wir uns in das normale Belohnungssystem ein», sagt er. Gutes Essen beispielsweise löst Glücksgefühle aus, welche das Modul einschalten und in einen Ablauf eingreifen, der normalerweise nur durch das Unterbewusstsein gesteuert wird. So könnten tägliche Aktivitäten zu therapeutischen Interventionen genutzt werden.

Das Dopamin-Bluthochdruck-Model ist vorerst nur ein Prototyp. Die Wissenschaftler haben mit ihrer Arbeit bewiesen, dass sie auf diese Weise in das Belohnungssystem des Körpers eingreifen können. Es ist jedoch mehr als nur eine Idee oder ein Versuch in lebenden Zellen. «Es funktioniert im Mausmodell, das eine Krankheit des Menschen simuliert. Auch stammen die Bestandteile, mit denen wir das Modul erstellt haben, vom Menschen.» Ob und wann eine auf das Glückshormon abgestimmte Therapie auf den Markt kommt, ist jedoch ungewiss. Die Entwicklung vom Prototypen zu einem marktfähigen Produkt braucht Jahre oder gar Jahrzehnte.

Referenz:
Rössger K, Charpin-El-Hamri G & Fussenegger M. Reward-based hypertension control by a synthetic brain-dopamine interface. PNAS Early Edition, online 14th Oct. 2013.
Weitere Informationen:
http://www.ethlife.ethz.ch/archive_articles/131015_dopamin_netzwerk_per/index

Peter Rüegg | idw
Weitere Informationen:
http://www.ethz.ch

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Blattkäfer: Schon winzige Pestizid-Dosis beeinträchtigt Fortpflanzung
26.07.2017 | Universität Bielefeld

nachricht Akute myeloische Leukämie (AML): Neues Medikament steht kurz vor der Zulassung in Europa
26.07.2017 | Universitätsklinikum Ulm

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Navigationssystem der Hirnzellen entschlüsselt

Das menschliche Gehirn besteht aus etwa hundert Milliarden Nervenzellen. Informationen zwischen ihnen werden über ein komplexes Netzwerk aus Nervenfasern übermittelt. Verdrahtet werden die meisten dieser Verbindungen vor der Geburt nach einem genetischen Bauplan, also ohne dass äußere Einflüsse eine Rolle spielen. Mehr darüber, wie das Navigationssystem funktioniert, das die Axone beim Wachstum leitet, haben jetzt Forscher des Karlsruher Instituts für Technologie (KIT) herausgefunden. Das berichten sie im Fachmagazin eLife.

Die Gesamtlänge des Nervenfasernetzes im Gehirn beträgt etwa 500.000 Kilometer, mehr als die Entfernung zwischen Erde und Mond. Damit es beim Verdrahten der...

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Breitbandlichtquellen mit flüssigem Kern

Jenaer Forschern ist es gelungen breitbandiges Laserlicht im mittleren Infrarotbereich mit Hilfe von flüssigkeitsgefüllten optischen Fasern zu erzeugen. Mit den Fasern lieferten sie zudem experimentelle Beweise für eine neue Dynamik von Solitonen – zeitlich und spektral stabile Lichtwellen – die aufgrund der besonderen Eigenschaften des Flüssigkerns entsteht. Die Ergebnisse der Arbeiten publizierte das Jenaer Wissenschaftler-Team vom Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT), dem Fraunhofer-Insitut für Angewandte Optik und Feinmechanik, der Friedrich-Schiller-Universität Jena und des Helmholtz-Insituts im renommierten Fachblatt Nature Communications.

Aus einem ultraschnellen intensiven Laserpuls, den sie in die Faser einkoppeln, erzeugen die Wissenschaftler ein, für das menschliche Auge nicht sichtbares,...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

10. Uelzener Forum: Demografischer Wandel und Digitalisierung

26.07.2017 | Veranstaltungen

Clash of Realities 2017: Anmeldung jetzt möglich. Internationale Konferenz an der TH Köln

26.07.2017 | Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Robuste Computer für's Auto

26.07.2017 | Seminare Workshops

Läuft wie am Schnürchen!

26.07.2017 | Seminare Workshops

Leicht ist manchmal ganz schön schwer!

26.07.2017 | Seminare Workshops