Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Glioblastome nutzen Immunzellen des Gehirns zum Wuchern

16.07.2009
Glioblastome zählen zu den häufigsten, aber auch bösartigsten Hirntumoren. Sie wachsen sehr schnell und dringen in das gesunde Gehirngewebe ein, weshalb bei einer Operation nie das gesamte Krebsgeschwür entfernt werden kann.

Jetzt haben die Neurochirurgen Dr. Darko. S. Markovic (Helios Klinikum Berlin Buch) und PD Dr. Michael Synowitz (Charité) sowie Dr. Rainer Glass und Prof. Helmut Kettenmann (beide Max-Delbrück-Centrum für Molekulare Medizin, MDC, Berlin-Buch) gezeigt, dass Glioblastomzellen die Immunzellen des Gehirns, die Mikrogliazellen, für ihre Ausbreitung nutzen. Zugleich klärten sie den molekularen Mechanismus dafür auf (PNAS, Early Edition)*.

Mikrogliazellen sind die Immunabwehr des zentralen Nervenssystems (ZNS). Auf ihrer Oberfläche tragen sie spezielle Antennen, Toll-like Rezeptoren genannt oder kurz TLR. Mit diesen Rezeptoren spüren sie im ZNS Erreger oder Entzündungsprozesse auf, um sie zu bekämpfen oder Reparaturmechanismen auszulösen.

Mikroglia greifen jedoch Glioblastome nicht an. Ganz im Gegenteil: diese Immunzellen unterstützen die Ausbreitung der Tumore sogar noch und verschlimmern den Krankheitsprozess. Wie, das konnten die Berliner Forscher zusammen mit Forschern aus Warschau, Polen, Amsterdam, Niederlande und Bethesda, USA jetzt zeigen. Das Projekt förderte das Bundesforschungsministerium in einem deutsch-polnischen Partnerprogramm.

Mikrogliazellen reichern sich in und um ein Gliablastom an. Tatsächlich besteht ein solcher Hirntumor in fortgeschrittenem Stadium bis zu 30 Prozent aus Mikrogliazellen, vor allem an den Tumorrändern sind diese Immunzellen konzentriert.

Glioblastomzellen manipulieren die Immunzellen
Die Glioblastomzellen schütten bestimmte Enzyme (Metalloproteasen) aus, die das Gewebe zwischen den Zellen, die extrazelluläre Matrix sowie die Zell-Zell-Verbindungen, auflösen. Die Gliome produzieren jedoch hauptsächlich einen inaktiven Vorläufer der Metalloproteasen, der erst durch Spaltung mit Hilfe eines Enzyms der Mikroglia scharf gemacht wird.

Dieses Enzym, sitzt in der Zellhülle (Membran) der Mikrogliazellen, weshalb die Forscher es Membran Typ 1 Metalloprotease (MT1-MMP) nennen. MT1-MMP macht den Glioblastomzellen den Weg frei, in das gesunde Hirngewebe vorzudringen.

Normalerweise produzieren Mikrogliazellen dieses Enzym nicht. Die Gliomzellen jedoch manipulieren die Mikroglia indem sie deren TLR stimulieren, so daß die Immunzellen das Enzym MT1-MMP auf ihrer Zelloberfläche präsentieren.

In Mäusen konnten die Forscher ihre in der Zellkultur gewonnenen Daten bestätigen. "Bei den Tieren, bei denen wir das MT1-MMP-Gen oder ein zentrales Gen für die TLR-Signalgebung ausgeschaltet hatten, lockten Gliome weit weniger Mikrogliazellen an und die Tumore wuchsen erheblich langsamer", erläutert Prof. Kettenmann.

Den Nachweis von MT1-MMT auf Mikrogliazellen erbrachten die Forscher auch in Gewebeproben von Glioblastompatienten. Auffallend war, dass die Glioblastome alle in einem weit fortgeschrittenen Stadium waren und die Mikrogliazellen sich im Randbereich des Tumors befanden. Bei Mikrogliazellen in gesundem Hirngewebe sind die MT1-MMP-Werte hingegen sehr gering. Die Glioblastomzellen selbst machen kein MT1-MMP. Lösten die Forscher jedoch die Expression des Enzyms bei Glioblastomzellen experimentell aus, gingen die Krebszellen zugrunde.

Möglicherweise, so die Forscher, könnte die Blockade des TLR-Rezeptors der Mikrogliazellen oder deren intrazelluläre Signalwege in Zukunft die rasche Ausbreitung von Glioblastomen reduzieren. Prof. Kettenmann: "Mikroglia wird so zu einem neuen Target der Glioblastomforscher."

* Gliomas induce and exploit microglial MT1-MMP expression for tumor expansion
D. S. Markovica,b, K. Vinnakotaa, S. Chirasania, M. Synowitza,c, H. Ragueta, K. Stocka, M. Sliwad, S. Lehmanne, R. Ka? linf,N. van Rooijeng, K. Holmbeckh, F. L. Heppnerf, J. Kiwitb, V. Matyasha, S. Lehnardte, B. Kaminskad, R. Glassa,1,2, and H. Kettenmanna,1

aCellular Neuroscience, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany; bDepartment of Neurosurgery, Helios Clinics, 13125 Berlin, Germany; cDepartments of Neurosurgery and fNeuropathology and eCecilie Vogt Clinic for Neurology, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany; dLaboratory of Transcription Regulation, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland; gDepartment of Molecular Cell Biology, Faculty of Medicine, Vrije Universiteit, VU University Medical Center, 1081 BT Amsterdam, The Netherlands; And and hCraniofacial Skeletal Diseases Branch, Matrix Metalloproteinase Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892

Barbara Bachtler
Pressestelle
Max-Delbrück-Centrum für Molekulare Medizin (MDC) Berlin-Buch
Robert-Rössle-Straße 10
13125 Berlin
Tel.: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de

Barbara Bachtler | idw
Weitere Informationen:
http://www.mdc-berlin.de/
http://www.neuroglia.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Forschungsteam entdeckt Mechanismus zur Aktivierung der Reproduktion bei Pflanzen
28.04.2017 | Universität Hamburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Chemnitz präsentiert weltweit einzigartige Pilotanlage für nachhaltigen Leichtbau

Wickelprinzip umgekehrt: Orbitalwickeltechnologie soll neue Maßstäbe in der großserientauglichen Fertigung komplexer Strukturbauteile setzen

Mitarbeiterinnen und Mitarbeiter des Bundesexzellenzclusters „Technologiefusion für multifunktionale Leichtbaustrukturen" (MERGE) und des Instituts für...

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Tag der Immunologie - 29. April 2017

28.04.2017 | Veranstaltungen

Kampf gegen multiresistente Tuberkulose – InfectoGnostics trifft MYCO-NET²-Partner in Peru

28.04.2017 | Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Über zwei Millionen für bessere Bordnetze

28.04.2017 | Förderungen Preise

Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers

28.04.2017 | Biowissenschaften Chemie

Wie Pflanzen ihre Zucker leitenden Gewebe bilden

28.04.2017 | Biowissenschaften Chemie