Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Glibber aus der Tiefsee

15.01.2016

ETH-Wissenschaftler erforschen die aussergewöhnlichen Absonderungen des Schleimaals. Wie dieses natürliche Hydrogel für den Menschen nutzbar gemacht werden könnte, wollen die Forscher in den kommenden drei Jahren herausfinden.

Dieses Tier hat alles richtig gemacht. Es existiert seit 300 Millionen Jahren, hat die Dinosaurier überlebt, den grossen Meteoriteneinschlag, Warmphasen, Eiszeiten – und es bevölkert noch immer die Tiefen der Meere, wo es von Aas lebt oder Beute macht. Ein attraktives Äusseres besitzt er allerdings nicht, der atlantische Schleimaal (Myxine glutinosa). Dennoch hat eine Gruppe von ETH-Forschern vom Labor für Lebensmittelverfahrenstechnik von Professor Erich Windhab grossen Gefallen an ihm gefunden. Oder präziser gesagt: an seinem Schleim.


Der zähe und elastische Schleim des atlantischen Schleimaals hat es einer ETH-Forschungsgruppe angetan.

Bild: ETH Zürich/Simon Kuster et al.


Schwierige Haltung: Schleimaale in einem Meerwasserbecken.

Bild: ETH Zürich/Simon Kuster

Der Schleim ist etwas vom Aussergewöhnlichsten, das die Natur hervorgebracht hat. Sobald ein Schleimaal von einem Feind gepackt wird, stösst er ein Sekret aus, das innerhalb von Sekundenbruchteilen geliert, selbst in kaltem Wasser. Dieses Sekret vermag Unmengen von Wasser zu binden, wodurch sich ein durchsichtiger, zäher und klebriger Schleim bildet. Fische, die es auf den Schleimaal abgesehen haben, ersticken fast ab dem Schleim wodurch der Schleimaal entkommen kann.

TV-Doku als Funke

Dieser Schleim ist nun zum Gegenstand eines ETH-Forschungsprojekts geworden, an dem Doktorand Lukas Böni, Masterstudent Lukas Böcker und Postdoc Patrick Rühs unter der Leitung von Simon Kuster aus der Gruppe von Professor Peter Fischer in den kommenden drei Jahren arbeiten werden.

Auf die schleimenden Meeresbewohner stiess Kuster vor zwei Jahren. Er sah einen BBC-Dokumentarfilm über atlantische Schleimaale (engl. Hagfish) - und war von diesen Tieren fasziniert. «Als Chemiker und Materialforscher hat sich mir sofort die Frage gestellt, woraus der Schleim besteht und wie das Material beschaffen sein muss, damit es eine derart riesige Menge Wasser binden kann», sagt Kuster.

Vorrecherchen zeigten den ETH-Forschern, dass die Schleimbildung und sein Ausstoss nur wenig untersucht und kaum verstanden sind. Bekannt ist, dass das natürliche Hydrogel des Schleimaals zwei Hauptbestandteile hat: einen rund 15 bis 30 Zentimeter langen Proteinfaden und sogenannte Muzine, welche die Fäden untereinander vernetzen und den Schleim erst «schleimig» machen. Dieser Faden hat ähnliche Eigenschaften wie Spinnfäden. Er ist extrem reissfest und elastisch – allerdings nur in angefeuchtetem Zustand.

Produziert werden diese Hauptbestandteile in speziellen Drüsen. Darin eingebettet sind zwei Typen von Zellen, die entweder das fädige Protein oder Muzin produzieren. Bei Gefahr stösst der Aal diese Zellen ruckartig über Poren aus. Dabei zerreissen die Plasmamembranen, und die beiden Komponenten, also die Proteine und Muzine, kommen frei. Sie interagieren und bilden die Matrix, welche das Wasser «aufsaugt» und bindet.

Der Schleim besteht aus nahezu 100 Prozent Wasser und enthält nur gerade mal 0,004 Prozent «Geliermittel». Oder anders formuliert: Das Gewichtsverhältnis von «Geliermittel» zu Wasser beträgt das 26‘000fache - über 200 Mal mehr als bei herkömmlicher tierischer Gelatine. Für die Gelierung ist nur sehr wenig Energie notwendig.

Besonders fasziniert hat die ETH-Forscher die Tatsache, dass das fädige Protein in den Drüsenzellen als Knäuel von 150 Mikrometern Durchmesser vorliegt, im Schleim aber als mehrere Zentimeter langer, ausgestreckter Faden. Wie dieses Abwickeln genau vor sich geht, ist erst in Ansätzen geklärt. «Die Wicklung innerhalb der Zelle ist hochspezialisiert und sehr ungewöhnlich», betont Böni.

Zur Vorbereitung ihres Projekts reisten die ETH-Wissenschaftler mehrere Male nach Norwegen. Nach langer Suche fanden sie in Ålesund einen Projektpartner, der die Möglichkeit hatte, atlantische Schleimaale in der freien Wildbahn zu fangen und im Aquarium zu halten. «Bevor wir mit dem Aquarium zusammenarbeiteten, führten wir erste Vorversuche am Schleim in einer Garage durch und nahmen dafür einen Teil ihrer Laborinfrastruktur der ETH nach Norwegen mit», erklärte Fischer.

Die Tiere nach Zürich zu transportieren, ist hingegen nicht sinnvoll. «Der Transport würde sie so stressen, dass sie während der ganzen Zeit Schleim absondern und schliesslich daran ersticken würden», sagt Lukas Böcker. Auch hätten sie in ihrem Labor in Zürich keine Möglichkeit, die Schleimaale artgerecht – in 10-grädigem frischem Meerwasser bei kompletter Dunkelheit – zu halten.

Super-Hydrogel nach natürlichem Vorbild

Das Ziel des Projektes ist, das vom Schleimaal erzeugte Gel so zu verändern, dass es das Wasser dauerhaft zurückhalten kann und so zu einem «Super-Hydrogel» werden könnte. Dazu müssen die Forscher allerdings erst das Geheimnis des enormen Wasseraufnahmevermögen des Schleims ergründen.

Dank ihrer Voruntersuchungen haben die ETH-Wissenschaftler einen Weg gefunden, das Drüsensekret so zu stabilisieren, damit sie es für ihre Studien nach Zürich ins Labor transportieren können. Welche Faktoren diese Stabilisierung ermöglichen, ist ihnen jedoch nicht bekannt. Lösen sie dieses Rätsel, wäre es denkbar, eine ähnliche Stabilisation bei einem biomimetischen Nachahmerprodukt – ein Fernziel des Projekts - anzuwenden.

Eine exakte Nachbildung des Sekrets ist allerdings eher unrealistisch: «Wir können den Schleim dieses Fisches nicht im Labor nachbauen, dafür ist das natürliche System zu komplex», betont Kuster. Ein Gel zu entwickeln, das auf dem Prinzip des natürlichen Schleims beruht, liege aber durchaus im Bereich des Möglichen.

Hydrogels sind bereits heute in zahlreichen Anwendungen enthalten, von Papierwindeln über Heftpflaster bis hin zu Bewässerungssystemen für die Landwirtschaft. Auch in der Nahrungsmittelindustrie werden Hydrogele breit eingesetzt. Andere Wissenschaftler, die den Schleim erforscht haben, möchten die Fasern für die Herstellung von Textilien nutzen.

Ob sich aus dem Projekt eine praktische Anwendung ergeben wird, können die ETH-Forscher noch nicht abschätzen. Jedoch konnten sie bereits publizieren, dass sie den kurzlebigen Schleim, der unter mechanischem Stress kollabiert, stabilisieren können und durch das einmischen in andere Hydrogele oder partikuläre Netzwerke zusätzliche Funktionalisierungen erzielen konnten.

Literaturhinweis

Böcker L, Rühs PA, Böni L, Fischer P, Kuster S. Fiber-Enforced Hydrogels: Hagfish Slime Stabilized with Biopolymers including κ-Carrageenan. ACS Biomaterials Science & Engineering, published online Nov 10 2015. DOI: 10.1021/acsbiomaterials.5b00404

Weitere Informationen:

https://www.ethz.ch/de/news-und-veranstaltungen/eth-news/news/2016/01/schleimaal...

Peter Rüegg | ETH Zürich

Weitere Berichte zu: ETH Geliermittel Glibber Hydrogele Meerwasser Muzine Schleim Zellen protein

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neue Materialchemie für Hochleistungsbatterien
19.09.2017 | Technische Universität Berlin

nachricht Zentraler Schalter der Immunabwehr gefunden
19.09.2017 | Medizinische Hochschule Hannover

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantensensoren entschlüsseln magnetische Ordnung in neuartigem Halbleitermaterial

Physiker konnte erstmals eine spiralförmige magnetische Ordnung in einem multiferroischen Material abbilden. Diese gelten als vielversprechende Kandidaten für zukünftige Datenspeicher. Der Nachweis gelang den Forschern mit selbst entwickelten Quantensensoren, die elektromagnetische Felder im Nanometerbereich analysieren können und an der Universität Basel entwickelt wurden. Die Ergebnisse von Wissenschaftlern des Departements Physik und des Swiss Nanoscience Institute der Universität Basel sowie der Universität Montpellier und Forschern der Universität Paris-Saclay wurden in der Zeitschrift «Nature» veröffentlicht.

Multiferroika sind Materialien, die gleichzeitig auf elektrische wie auch auf magnetische Felder reagieren. Die beiden Eigenschaften kommen für gewöhnlich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungen

Biowissenschaftler tauschen neue Erkenntnisse über molekulare Gen-Schalter aus

19.09.2017 | Veranstaltungen

Zwei Grad wärmer – und dann?

19.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungsnachrichten

Zentraler Schalter der Immunabwehr gefunden

19.09.2017 | Biowissenschaften Chemie

Neue Materialchemie für Hochleistungsbatterien

19.09.2017 | Biowissenschaften Chemie