Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Glasfassaden – Fallen für Fledermäuse

08.09.2017

Eine glatte, senkrechte Fläche wird von Fledermäusen bis kurz vor der Kollision wie ein freier Flugweg wahrgenommen. Die glatte Oberfläche reflektiert die Ultraschalllaute von der sich nähernden Fledermaus weg und ist so für die Tiere unhörbar. In Zeiten von Gebäuden mit Glasfassaden ein fataler Irrtum. Wissenschaftler vom Max-Planck-Institut für Ornithologie in Seewiesen haben in Experimenten und im Freiland das Flug- und Echoortungsverhalten dreier Fledermausarten untersucht, die versuchten, durch eine glatte senkrechte Fläche zu fliegen. Die Anzahl der Laute und die Zeit, die sie vor der Oberfläche verbrachten, beeinflusste dabei die Wahrscheinlichkeit einer Kollision.

Fledermäuse verlassen sich weitgehend auf ihre Echoortungslaute, um sich zu ernähren, zu orientieren und zu navigieren. In unserer modernen Welt erleben sie dabei allerdings Situationen, die ihr ansonsten hervorragendes Sinnessystem trügen und sie ihre Umgebung falsch interpretieren lassen.


Das Große Mausohr und andere Fledermäuse können glatte Glasflächen oft erst im letzten Moment wahrnehmen. Deshalb kommt es immer wieder zu Kollisionen mit gläsernen Fassaden von Gebäuden.

Stefan Greif

Stefan Greif und Björn Siemers vom Max-Planck-Institut für Ornithologie in Seewiesen haben in einer früheren Studie gezeigt, dass Fledermäuse glatte horizontale Flächen für Wasser halten. Die Fledermäuse interpretieren diese mit ihren Ultraschalllauten schon von Geburt an als Oberfläche von Pfützen, Teichen oder Seen, denn sie funktionieren wie ein Spiegel:

Treffen die Laute mit einem schrägen Winkel auf die Wasseroberfläche, werden sie komplett von den Tieren weg reflektiert. Nur ein starkes, senkrechtes Echo von unten kommt wieder zur Fledermaus zurück.

In einer natürlichen Landschaft sind Gewässer die einzigen räumlich ausgedehnten glatten Flächen. Daher scheint diese Information für Wasser im Fledermausgehirn so gut verdrahtet zu sein, dass die Tiere in den Experimenten der Forscher trotz zahlreicher missglückter Versuche nicht aufgaben, von einer Metallplatte zu trinken, die ihnen die Wissenschaftler anboten.

Kollision im Flugraum

Nun zeigen Stefan Greif und Sándor Zsebők zusammen mit anderen Kollegen des Instituts in einer neuen Studie, dass Fledermäuse senkrechte glatte Flächen fatalerweise nicht als Hindernis, sondern im Gegenteil als Loch zum Durchfliegen interpretieren. Dazu haben die Wissenschaftler zunächst Große Mausohren (Myotis myotis) in einem abgedunkelten Flugraum untersucht, in dem eine Wand mit einer glatten Platte versehen war. Mit Hilfe von Infrarot-Kameras und Mikrofonen haben sie herausgefunden, dass 19 von 21 Tieren innerhalb einer Viertelstunde mindestens einmal mit der Platte zusammenstießen. Legten die Forscher die Platte auf den Boden, gab es keine einzige Kollision. 13 Tiere versuchten jedoch, davon zu trinken.

Um zu verstehen, warum die Tiere mit der vertikalen Platte kollidierten, analysierten die Wissenschaftler das Flug- und Echoortungsverhalten der Fledermäuse wenn sie auf Kollisionskurs zur Platte waren. Sie unterschieden zwischen drei verschiedenen Situationen: „Gerade noch vermiedene Kollisionen“ bis kurz vor der Platte, „Kollisionen mit Flugmanöver“, bei der die Fledermäuse kurz vor dem Zusammenstoß noch versuchten auszuweichen, und „Kollisionen ohne vorher erkennbare Reaktionen der Tiere“.

Nur in einem Drittel der beobachteten Anflüge schafften es die Fledermäuse, der Platte auszuweichen. Wenn die Fledermaus auf die Platte zufliegt, werden ihre Echoortungslaute zuerst von dieser vom Tier weg reflektiert, was bei der Fledermaus aufgrund der fehlenden Echos den Eindruck eines Lochs in der Wand hinterläßt. Erst wenn sie sich direkt neben der glatten Fläche befindet, werden starke, senkrechte Echos zur Fledermaus zurück gespiegelt.

Die Fledermaus kann also erst kurz vor dem Aufprall erkennen, dass es sich hier um ein Hindernis und nicht um eine freie Flugbahn handelt. Tatsächlich fanden die Forscher bei Kollisionen ohne sichtbare Reaktion, dass die Tiere vor dem Aufprall weniger Laute ausstießen und weniger Zeit vor der Platte verbrachten als in Situationen, bei denen es ihnen noch gelang, auszuweichen. Dies erklärt auch, warum es den Fledermäusen möglich war eine Kollision zu vermeiden: Wenn sie genügend Zeit und Informationen in Form von Echos hatten um diese Situation zu verarbeiten, konnten sie die senkrechten Echos gerade noch erkennen und die akustische Illusion eines offenen Flugwegs enttarnen.

Ähnliche Ergebnisse für andere Fledermaus-Arten

Die Forscher überprüften ihre Ergebnisse im Freiland mit drei Fledermausarten und beobachten auch dort Kollisionen mit der glatten Platte. „Wenn außer starken, senkrechten Echos von unten keine Echos kommen, ist das für Fledermäuse ein untrügliches Signal für Wasser“, sagt Stefan Greif, Erstautor der beiden Studien. „Genau solche Echos von der Seite warnen die Tiere hingegen vor einem plötzlichen Hindernis auf einer bis dahin gedacht freien Flugbahn.“

Die Tiere in dieser Studie konnten in dem Flugraum nicht so schnell fliegen wie in der Natur, und blieben daher bei den Versuchen unverletzt. Immer wieder werden jedoch unter Glasfassaden neben Millionen von Vögeln auch Fledermäuse gefunden. Die Forscher fordern deshalb eine systematische Erfassung gefundener verletzter oder toter Fledermäuse, um abschätzen zu können, wie viele Tiere bei solchen Kollisionen zu Schaden kommen. Des weiteren sollten Maßnahmen entwickelt werden, mit denen Kollisionen an Gebäuden mit ausgedehnten Glasfassaden verhindert werden können, die auf Zugrouten, in wichtigen Nahrungsgebieten oder in der Nähe großer Fledermauskolonien liegen.

Stefan Greif, Sándor Zsebők, Daniela Schmieder & Björn M. Siemers
Acoustic mirrors as sensory traps for bats. Science, veröffentlicht am 08.09.2017

Kontakt:
Dr. Stefan Greif
Max-Planck-Institut für Ornithologie, Seewiesen
Ehemalige Forschungsgruppe Sinnesökologie
E-mail: stefan.greif@gmail.com

Weitere Informationen:

http://www.youtube.com/watch?time_continue=1&v=W2L9d4qLJn0

Dr. Sabine Spehn | Max-Planck-Institut für Ornithologie
Weitere Informationen:
http://www.orn.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Parasitenflirt: Molekulare Kamera zeigt Paarungszustand von Bilharziose-Erregern in 3D
19.09.2017 | Justus-Liebig-Universität Gießen

nachricht Ein Traum von einem Schaum
19.09.2017 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantensensoren entschlüsseln magnetische Ordnung in neuartigem Halbleitermaterial

Physiker konnte erstmals eine spiralförmige magnetische Ordnung in einem multiferroischen Material abbilden. Diese gelten als vielversprechende Kandidaten für zukünftige Datenspeicher. Der Nachweis gelang den Forschern mit selbst entwickelten Quantensensoren, die elektromagnetische Felder im Nanometerbereich analysieren können und an der Universität Basel entwickelt wurden. Die Ergebnisse von Wissenschaftlern des Departements Physik und des Swiss Nanoscience Institute der Universität Basel sowie der Universität Montpellier und Forschern der Universität Paris-Saclay wurden in der Zeitschrift «Nature» veröffentlicht.

Multiferroika sind Materialien, die gleichzeitig auf elektrische wie auch auf magnetische Felder reagieren. Die beiden Eigenschaften kommen für gewöhnlich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Biowissenschaftler tauschen neue Erkenntnisse über molekulare Gen-Schalter aus

19.09.2017 | Veranstaltungen

Zwei Grad wärmer – und dann?

19.09.2017 | Veranstaltungen

10. Cottbuser Medienrechtstage zu »Fake News, Hate Speech und Whistleblowing«

18.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Biowissenschaftler tauschen neue Erkenntnisse über molekulare Gen-Schalter aus

19.09.2017 | Veranstaltungsnachrichten

Ausschreibung des Paul-Martini-Preises 2018 für klinische Pharmakologie

19.09.2017 | Förderungen Preise

Simulation von Energienetzwerken für Strom, Gas und Wärme

19.09.2017 | Energie und Elektrotechnik