Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein Gitter im Gehirn

23.01.2014
Wie schätzen wir innerlich die Entfernung zwischen zwei Orten? Berliner Wissenschaftler entdecken ein gitterartiges Netzwerk von Nervenzellen im Gehirn, das ähnlich wie Gitterlinien auf Stadtplänen bei der Orientierung helfen könnte.

Tiere und Menschen orientieren sich mit Hilfe eines inneren Navigationssystems. In Säugetieren sind zwei Hirnsteile maßgeblich am Aufbau von solchen räumlichen Repräsentationen beteiligt: Der Hippocampus und die entorhinale Hirnrinde.


Ein gitterartiges Nervenzell-Netzwerk (links, vergrößert rechts oben), das in seiner hexagonalen Struktur (rechts unten) den räumlichen Gittermustern ähnelt, die man bei Nervenzellen beobachtet hat. Science

Diese Hirnstrukturen speichern Sinneseindrücke und repräsentieren sie in Form einer kognitiven Karte, einer mentalen Darstellung der räumlichen Struktur der Umwelt. Die Repräsentation des Raumes in der entorhinalen Hirnrinde ist besonders bemerkenswert: Dort finden sich sogenannte Gitterzellen (Englisch: Grid cells).

Das sind Nervenzellen, die in räumlichen Gittermustern aktiv sind, wenn sich Tiere fortbewegen. Man nimmt an, dass das Gehirn diese räumlichen Aktivitätsmuster ähnlich einsetzt, wie wir die Gitterlinien auf Stadtplänen oder Landkarten nutzen, um Orte zu lokalisieren oder um Entfernungen zu messen. Unklar war bisher jedoch, wie sich anatomisch im Gehirn ein solches Muster von erregten Nervenzellen bildet.

Ein Team von Wissenschaftlern um den Leibniz-Preisträger Professor Michael Brecht von der Humboldt Universität zu Berlin, dem Exzellenzcluster Neurocure und dem Bernstein Zentrum Berlin hat jetzt ein gitterartiges Netzwerk von Nervenzellen in der entorhinalen Hirnrinde entdeckt. Mithilfe eines Proteins, welches an Kalzium in bestimmten Nervenzellen bindet, machten die Forscher einen kleinen Zellverband sichtbar. Dessen Nervenzellfortsätze bildete im Raum ein sechseckiges Muster, das eine verblüffende Ähnlichkeit mit den bekannten Gittermustern aufwies. Die an dem Netzwerk beteiligten Neurone zeigten außerdem den gleichen charakteristischen Aktivitätsrhythmus wie die Gitterzellen, als die Forscher die Nervenzellaktivität in sich bewegenden Tieren maßen.

„Wir wissen schon länger, dass das Gehirn Gittermuster nutzt, um die Umwelt zu kartieren. Was wir aber bis jetzt nicht verstanden haben, ist, wie das Hirn solche Gittermuster erzeugt. Unser Team hat jetzt die Existenz eines Netzwerks aufgedeckt, das physikalisch so aussieht wie das räumliche Aktivitätsmuster der sogenannten Gitterzellen. Dies könnte darauf hindeuten, dass das von uns entdeckte Nervenzellgitter das zugrundeliegende anatomische Fundament bildet,“ kommentiert Brecht die an diesem Donnerstag in Science erscheinende Arbeit.

Die Entdeckung des neuronalen Netzwerks könnte daher zu verstehen helfen, wie unser Gehirn mentale Karten mit Gitterlinien versieht, anhand denen wir räumliche Distanzen abschätzen können. Weiterhin erhoffen sich die Forscher von dem Fund Aufschluss darüber, wie das räumliche Gedächtnis funktioniert – eine Hirnfunktion, die in vielen Demenzerkrankungen beeinträchtigt ist oder verloren geht. Grundsätzlich könnte die Art, wie das Gehirn räumliche Erinnerungen speichert, der entsprechen, wie es Erinnerungen im Allgemeinen bildet: Wie in den Gedächtnispalästen der antiken Griechen könnten Objekte mit räumlichen Informationen verknüpft sein, um als Gedächtnisstütze zu dienen.

Das Bernstein Zentrum Berlin ist Teil des Nationalen Bernstein Netzwerks Computational Neuroscience. Seit 2004 fördert das Bundesministerium für Bildung und Forschung (BMBF) mit dieser Initiative die neue Forschungsdisziplin Computational Neuroscience mit über 170 Mio. €. Das Netzwerk ist benannt nach dem deutschen Physiologen Julius Bernstein (1835-1917).

Weitere Informationen erteilen Ihnen gerne:
Prof. Dr. Michael Brecht
Bernstein Zentrum Berlin
Humboldt-Universität zu Berlin
Philippstr. 13, Haus 6
10115 Berlin
Tel: +49 (0)30 2093 6718
Email: michael.brecht@bccn-berlin.de
Originalpublikation:
S. Ray, R. Naumann, A. Burgalossi, Q. Tang, H. Schmidt & M. Brecht (2014): Grid-layout and Theta-modulation of Layer 2 Pyramidal Neurons in Medial Entorhinal Cortex. Science. Advanced Online Publication.

Weitere Informationen:

http://www.activetouch.de Arbeitsgruppe von Michael Brecht
http://www.bccn-berlin.de Bernstein Zentrum Berlin
http://www.hu-berlin.de Humboldt-Universität zu Berlin
http://wwww.nncn.de Nationales Bernstein Netzwerk Computational Neuroscience

Mareike Kardinal | idw
Weitere Informationen:
http://wwww.nncn.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Eine Karte der Zellkraftwerke
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung
18.08.2017 | Deutsches Zentrum für Infektionsforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie