Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Warum die Giraffe nicht wie ein Dackel laufen kann

06.03.2009
Wissenschaftler der Universität Jena erforschen in EU-Projekt die menschliche Fortbewegung

Zuerst können sie nur einige Zentimeter vorwärts robben, dann beginnen sie zu krabbeln und irgendwann, nachdem sie sich zum ersten Mal selbstständig aufgerichtet haben, sind sie vor Begeisterung am Laufen kaum noch zu bändigen.

"Die Art, wie Kinder laufen lernen, ist dem Übergang vom vierbeinigen zum zweibeinigen Gang im Laufe der Evolution des Menschen erstaunlich ähnlich", sagt Dr. André Seyfarth von der Friedrich-Schiller-Universität Jena. Zusammen mit einem internationalen Forscherteam will er herausfinden, wie sich der Übergang zur Zweibeinigkeit mechanisch abspielt. Dafür startet jetzt ein Kooperationsprojekt mit Kollegen aus der Schweiz, Belgien, Dänemark und Kanada, das die EU für die nächsten vier Jahre mit insgesamt 2,7 Millionen Euro fördert. 515.000 Euro davon erhält die Jenaer Arbeitsgruppe um Dr. Seyfarth.

Locomorph heißt das neue Projekt, zusammengesetzt aus den Wörtern Lokomotion und Morphologie. Dahinter verbirgt sich, wörtlich genommen, die Gestalt der Bewegung. Und genau das ist erklärtes Ziel von André Seyfarth: "Wir wollen begreifen, wie die mechanische und neuronale Kommunikation im bewegten Bein aussieht. Und zwar so genau, dass wir es nachstellen können." Geplant ist der Bau von modularen Laufrobotern, mit denen die Entwicklung von der vierbeinigen zur zweibeinigen Lokomotion nachgestellt werden kann. Doch bevor die Wissenschaftler diesen letzten der drei Projektteile verwirklichen können, stehen Bewegungsanalysen und die Entwicklung von Computermodellen an.

Im Jenaer Lauflabor starten dazu jetzt Untersuchungen, bei denen die Bewegung von Probanden auf dem Laufband eingehend erforscht wird. Dazu nutzen die Wissenschaftler auch speziell angepasste Orthesen. Die werden normalerweise eingesetzt, um eingeschränkt funktionstüchtige Körperteile zu unterstützen, zum Beispiel zur Gelenkstabilisierung nach Sportunfällen. "Unsere Orthesen haben wir in ihrer Mechanik so umgebaut", erklärt André Seyfarth, "dass wir von außen typische Bewegungsprogramme nachstellen können. Der Körper kann uns dann signalisieren, ob er das Programm als hilfreich oder störend empfindet." Dadurch erfahren die Forscher, ob es sich bereits um den natürlichen Zustand handelt oder ob sie weiter nach der richtigen Lösung suchen müssen. "Wir nutzen sozusagen einen umgekehrten Weg und versuchen die biologischen Zusammenhänge aufzuklären, indem wir die zugrunde liegenden Mechanismen identifizieren und dem Körper anbieten", so Seyfarth.

Parallel zu den Analysen der Jenaer Arbeitsgruppe machen die Kollegen in Belgien ähnliche Messungen mit Echsen, Primaten und Kindern. "Dadurch erhoffen wir uns ein möglichst genaues Bild der Bewegungsmuster beim Übergang vom vier- in den zweibeinigen Gang", so Seyfarth.

Anhand der Messdaten wollen die Wissenschaftler ein Computermodell entwickeln und anschließend in ein technisches System umsetzen. Dafür sollen im gerade vergrößerten Jenaer Laufrobotik-Labor verschiedene Laufroboter konstruiert werden, mit denen sich die Bewegungsmodelle darstellen und testen lassen. Der Vorteil eines technischen Systems liegt für Arbeitsgruppenleiter André Seyfarth auf der Hand: Man kann es anfassen, verändern und beobachten, welche Reaktion die Veränderung hervorruft. "Dadurch nähern wir uns Schritt für Schritt den exakten Abläufen bei der menschlichen Bewegung."

Ziel des Projekts ist es, mit Hilfe der Robotik ein Werkzeug zu schaffen, mit dem die Bewegungsmorphologie in verschiedenen menschlichen oder biologischen Entwicklungsstufen dargestellt und begreiflich gemacht werden kann. Dadurch wäre es möglich, für Patienten mit Bewegungsstörungen oder Beinamputationen individuelle Therapien oder Prothesen zu entwickeln, so Seyfarth. Schließlich habe jeder Mensch ein eigenes Gangbild. Den herkömmlichen Vergleich gestörter Bewegungsmuster mit einer Normkurve hält der Jenaer Wissenschaftler für ungünstig, weil dieser individuelle Bewegungseigenschaften des jeweiligen Körpers nicht abbildet. "Wenn man eine Giraffe zwingt, wie ein Dackel zu gehen, wird sie immer unglücklich sein, weil sie es einfach nicht realisieren kann", macht Seyfarth das Problem deutlich.

"In vier Jahren", so hofft er, "könnte durch neue Forschungsergebnisse eine bessere Grundlage dafür geschaffen sein, um bei der Behandlung von motorischen Störungen, z. B. nach einem Unfall, die individuellen morphologischen Voraussetzungen zur Fortbewegung der einzelnen Patienten besser berücksichtigen zu können."

Kontakt:
Dr. André Seyfarth
Institut für Sportwissenschaft der Friedrich-Schiller-Universität Jena
Dornburger Str. 23, 07743 Jena
Tel.: 03641/945730
E-Mail: Andre.Seyfarth[at]uni-jena.de

Manuela Heberer | idw
Weitere Informationen:
http://www.uni-jena.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Herz-Bindegewebe unter Strom
08.12.2016 | Universitäts-Herzzentrum Freiburg - Bad Krozingen

nachricht Der Evolution des Immunsystems auf der Spur
08.12.2016 | Charité – Universitätsmedizin Berlin

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Herz-Bindegewebe unter Strom

08.12.2016 | Biowissenschaften Chemie

Eine Extra-Sekunde zum neuen Jahr

08.12.2016 | Physik Astronomie

Wenn der Fluss krank ist – Fachseminar zu Gewässerökologie und Gewässerschutz

08.12.2016 | Seminare Workshops