Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Giftige Tränen - Die Biophysik des Schlangenbisses

16.05.2011
Schlangen injizieren ihr Gift durch einen hohlen Giftzahn in ihr Opfer – glauben die meisten Menschen. Doch die meisten Schlangen und viele andere giftige Reptilien haben gar keinen hohlen Zahn. Physiker der Technischen Universität München (TUM) haben nun heraus gefunden, welche Tricks diese Tiere anwenden, um ihr Gift trotzdem erfolgreich unter die Haut ihrer Opfer zu bringen.

Seit Jahren erforschen Professor Leo van Hemmen, Biophysiker an der TU München, und Professor Bruce Young, Biologe an der University of Massachusetts Lowell, den Gehörsinn von Schlangen. Als Sie über die Giftigkeit ihrer Schlangen diskutierten stellten sie fest, dass nur wenige Schlangen ihr Gift mit Druck durch einen hohlen Giftzahn in den Körper des Opfers injizieren. Die weitaus meisten giftigen Reptilien haben keinen hohlen Zahn, trotzdem jagen sie erfolgreich. Doch wie stellen sie das an?

Nur etwa ein Siebtel aller Giftschlangen nutzen, wie die Klapperschlange, den Trick mit dem hohlen Giftzahn. Die überwiegende Mehrheit hat ein anderes System entwickelt. Ein typischer Vertreter dieser Arten ist die Mangroven-Natter, Boiga dendrophila. Mit ihren Doppelzähnen reißt sie ein Loch in die Haut ihres Opfers. Zwischen den Zähnen und dem Gewebe fließt das Gift in die Wunde. Doch es geht noch einfacher: Viele Giftzähne haben lediglich eine Furche, an der entlang das Gift in die Wunde gelangt.

Die Forscher fragten sich, warum diese einfache Methode evolutionsbiologisch so erfolgreich sein konnte, obwohl beispielsweise Vogelfedern das offen auf dem Zahn entlang fließende Gift abstreifen können müssten. Um diesen Fragen auf den Grund zu gehen, untersuchten sie die Oberflächenspannung und die Viskosität verschiedener Schlangengifte. Ihre Messungen zeigen, dass Schlangengift erstaunlich zähflüssig ist.

Die Oberflächenspannung ist hoch, sie entspricht in etwas der von Wasser. Im Ergebnis ziehen die Oberflächenenergien einen Tropfen Schlangengift in die Rinne des Zahns, in der er sich dann ausbreitet. Durch eine optimale Geometrie der Zahnfurche und die Anpassung der Viskosität des Giftes haben sich die Schlangen im Laufe der Evolution auf ihre bevorzugten Opfer eingestellt. Vogelfressende Schlangen haben tiefere Furchen entwickelt, in denen das zähflüssige Gift von Vogelfedern nicht mehr abgestreift werden kann.

Gelöst wurde auch die Frage, wie die Schlange das Gift tief unter die Haut des Opfers bringt, denn erst dort kann es seine tödliche Wirkung entfalten. Auch hierfür haben Schlangen im Laufe der Evolution einen Trick entwickelt: Beißt die Schlange zu, bilden Zahnfurche und umliegendes Gewebe einen Kanal. Wie ein Löschblatt saugt das Gewebe das Gift durch diese Röhre. Und genau hierfür ist das Schlangengift in besonderer Weise zusammengesetzt: Wie Ketchup, der durch Schütteln deutlich flüssiger wird, lassen die durch den Sog auftretenden Scherkräfte das Schlangengift wesentlich dünnflüssiger werden, so das es dank der Oberflächenspannung schnell durch die Giftröhre einziehen kann.

Flüssigkeiten, die sich so verhalten, nennen die Wissenschaftler Nicht-Newtonsche Flüssigkeiten. Für die Schlange hat dies eine höchst praktische Konsequenz: So lange keine Beute in Sicht ist, liegt das Gift zähflüssig und klebrig in der Rinne. Beißt die Schlange zu, fließen – wie bei Wein entlang des Glases – die giftigen „Tränen“ entlang der Furche in die Wunde und entfalten dort ihre tödliche Wirkung.

Teile der Arbeiten wurden unterstützt durch das Bundesministerium für Bildung und Forschung über das Bernstein Center for Computational Neuroscience Munich. Professor van Hemmen ist Mitglied des Exzellenzclusters Cognition for Technical Systems (CoTeSys).

Original publication:

Tears of Venom: Hydrodynamics of Reptilian Envenomation
Bruce A. Young, Florian Herzog, Paul Friedel, Sebastian Rammensee, Andreas Bausch und J. Leo van Hemmen, Physical Review Letters, 106, 198103 (2011)

DOI: 10.1103/PhysRevLett.106.198103

Kontakt:

Prof. Dr. J. Leo van Hemmen
Technische Universität München
Physik-Department T35 – Lehrstuhl für Theoretische Biophysik
85747 Garching, Germany
Tel.: +49 89 289 12380 – Fax: +49 89 289 12296
E-Mail: lvh@tum.de

Dr. Ulrich Marsch | Technische Universität München
Weitere Informationen:
http://www.t35.ph.tum.de/lvh
http://prl.aps.org/abstract/PRL/v106/i19/e198103

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Sollbruchstellen im Rückgrat - Bioabbaubare Polymere durch chemische Gasphasenabscheidung
02.12.2016 | Gesellschaft Deutscher Chemiker e.V.

nachricht "Fingerabdruck" diffuser Protonen entschlüsselt
02.12.2016 | Universität Leipzig

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie