Gießener Wissenschaftler entdecken neuen Entsorgungsweg für verbrauchte Proteine

Proteine (Eiweiße) gehören zu den wichtigsten Bausteinen einer Zelle und übernehmen neben Ihrer Stützfunktion vielfältige weitere Funktionen wie die Regulation zellulärer Lebensvorgänge, die Beschleunigung biochemischer Reaktionen (Enzyme) und Bewegung.

Alle Proteine einer Zelle werden dabei ständig auf- und wieder abgebaut, um so die Zellfunktionen an wechselnde Umweltbedingungen anzupassen. Während Wissenschaftler lange damit beschäftigt waren herauszufinden, wie Gene abgelesen und Proteine hergestellt werden (Nobelpreis für Chemie 2009), ist heute die lange vernachlässigte Frage nach ihrem streng geregelten Abbau in den Vordergrund gerückt.

Proteine, die abgebaut werden sollen, werden zunächst mit einer Markierung versehen, die der Zelle signalisiert: ab in den Müllschlucker. Der „Müllschlucker“ der Zelle ist eine tonnenförmige Struktur aus Enzymen – das Proteasom. Ein Müllschluckerdeckel wirkt dabei als Türsteher, indem er markierte Proteine erkennt, entfaltet und anschließend zum Abbau ins Innere des Proteasoms einläßt. Als Abbaumarkierung dient ein in allen Zellen vorkommendes Protein namens Ubiquitin. Für die Entdeckung dieses Abbausystems wurde 2004 der Nobelpreis für Chemie an Aaron Ciechanover, Avram Hershko und Irwin Rose verliehen.

Nach der Aufklärung des Müllschluckerprinzips gilt es jetzt herauszufinden, wie als Müll deklarierte Proteine zum Ort ihres Abbaus, dem Proteasom, gelangen. Seit einiger Zeit war bereits bekannt, dass die Proteinkomplexe p97/VCP und CSN dabei eine wichtige Rolle spielen. p97/VCP ähnelt dem unteren Teil, das CSN dem oberen Teil des Proteasom-Deckels. Obwohl dies lange bekannt war, konnte bislang nicht nachgewiesen werden, dass beide Proteinkomplexe – ähnlich wie die Bestandteile des Proteasomdeckels – zusammen arbeiten.

Die Arbeitsgruppe um Prof. Meinhardt und Dr. Klug konnte nun zeigen, dass p97/VCP und CSN aneinander binden. Dies geschieht im Reagenzglas nur in Gegenwart des Energiespeichermoleküls ATP, das von p97/VCP für die Entfaltung von Proteinen, wiederum in Analogie zum Deckel des Proteasoms, benötigt wird. Demgegenüber reguliert das CSN, in welchem Ausmaß Proteine überhaupt mit Ubiquitin markiert werden. Die neuen Ergebnisse aus Gießen lassen nun vermuten, dass p97/VCP und CSN eng zusammenarbeiten, wobei das CSN die Markierung zu entsorgender Proteine mit Ubiquitin feinreguliert, während p97/VCP dafür sorgt, dass markierte Proteine zum Proteasom gelangen. Der Verbund aus p97/VCP und CSN könnte dabei eine Art Checkpoint darstellen, wo die Entscheidung zum Abbau des markierten Proteins entweder endgültig gefällt oder durch Entfernen der Ubiquitin-Markierung noch aufgehoben werden kann.

Titel der Veröffentlichung:
Sevil Cayli, Jörg Klug, Julius Chapiro, Suada Fröhlich, Gabriela Krasteva, Lukas Orel und Andreas Meinhardt (2009): The COP9 signalosome interacts ATP-dependently with p97/VCP and controls the ubiquitination status of proteins bound to p97/VCP.
J. Biol. Chem,
doi:10.1074/jbc.M109.037952
Kontakt:
Prof. Andreas Meinhardt oder Dr. Jörg Klug, Institut für Anatomie und Zellbiologie
Aulweg 123, 35385 Gießen
E-Mail: andreas.meinhardt@anatomie.med.uni-giessen.de
Telefon: 0641 99-47024
E-Mail: joerg.klug@anatomie.med.uni-giessen.de
Telefon: 0641 99-47033

Media Contact

Lisa Dittrich idw

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Bakterien für klimaneutrale Chemikalien der Zukunft

For­schen­de an der ETH Zü­rich ha­ben Bak­te­ri­en im La­bor so her­an­ge­züch­tet, dass sie Me­tha­nol ef­fi­zi­ent ver­wer­ten kön­nen. Jetzt lässt sich der Stoff­wech­sel die­ser Bak­te­ri­en an­zap­fen, um wert­vol­le Pro­duk­te her­zu­stel­len, die…

Batterien: Heute die Materialien von morgen modellieren

Welche Faktoren bestimmen, wie schnell sich eine Batterie laden lässt? Dieser und weiteren Fragen gehen Forschende am Karlsruher Institut für Technologie (KIT) mit computergestützten Simulationen nach. Mikrostrukturmodelle tragen dazu bei,…

Porosität von Sedimentgestein mit Neutronen untersucht

Forschung am FRM II zu geologischen Lagerstätten. Dauerhafte unterirdische Lagerung von CO2 Poren so klein wie Bakterien Porenmessung mit Neutronen auf den Nanometer genau Ob Sedimentgesteine fossile Kohlenwasserstoffe speichern können…

Partner & Förderer