Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gezielter Schnitt im Genom schwächt Malaria-Parasiten

17.11.2015

Wissenschaftler des Universitätsklinikums Heidelberg veröffentlichen neue Technik im Journal „Genome Biology“

Heidelberger Wissenschaftlern sind einem Impfstoff gegen Malaria ein kleines Stück näher gekommen: Es gelang ihnen, Malaria-Erregern einen Teil des Genoms mit mehr als 200 Genen zu amputieren. Die gentechnisch veränderten Parasiten können sich im


Das Bild zeigt sich entwickelnde Parasiten (rot) in einer kultivierten Leberzelle (gelb); DNA der Parasiten und Leberzelle ist in Cyan dargestellt.

Mirko Singer, Universitätsklinikum Heidelberg

Wirtskörper nicht mehr vollständig entwickeln und sind daher ein leichtes Ziel für das Immunsystem. Eine Impfstudie mit Mäusen brachte trotzdem keinen 100-prozentigen Erfolg. Zwar waren die meisten geimpften Tiere anschließend vor Infektionen geschützt, ein kleiner Teil der abgeschwächten Parasiten schaffte es allerdings, den Schaden am Erbgut zu kitten.

Sie verwendeten dazu einen Reparaturmechanismus, mit dem man bei den Erregern nicht gerechnet hatte. „Wir haben wieder einmal gelernt, wie widerstandsfähig diese Einzeller sind“, sagt Professor Dr. Friedrich Frischknecht vom Zentrum für Infektiologie des Universitätsklinikums Heidelberg.

„Trotzdem sind wir sicher, dass sich die neue Technik z.B. in Kombination mit anderen Strategien dazu eignet, einen sicheren Impfstoff zu entwickeln.“ Bisher ließen sich maximal drei Gene der Parasiten ausschalten. Die Arbeit ist jetzt online im Journal „Genome Biology“ erschienen.

Mehr als 300 Millionen Menschen erkranken jährlich an Malaria, einer Krankheit der Ärmsten in Afrika, Südasien und Südamerika - mehr als eine halbe Million sterben jedes Jahr daran; betroffen sind besonders Kinder unter fünf Jahren. Die Erreger, sogenannte Plasmodien, werden von Stechmücken übertragen und befallen als erstes Leberzellen.

Dort entwickeln sie sich zu einer aggressiven Form weiter, die in rote Blutzellen eindringt, sich dort massenhaft vermehrt und die Blutzellen zerstört. Dies verursacht die häufig lebensgefährlichen Symptome der Malaria: Fieber, Blutarmut bis hin zu Organversagen. Es wurden zwar inzwischen zahlreiche Medikamente zur Bekämpfung der Parasiten im Körper entwickelt, doch meist entwickeln sich früher oder später Resistenzen. Helfen kann wahrscheinlich auf lange Sicht nur eine Impfung.

Impfstoffe mit dem gesamten, unschädlich gemachten Erreger entwickeln

Erste Impfstoffkandidaten, die bereits in klinischen Studien getestet wurden, richten sich gegen einzelne Proteine des Parasiten. Der erste wurde dieses Jahr auch für Impfungen zugelassen, bietet aber keinen ausreichenden Schutz. Mehr Hoffnung setzen manche Forscher dagegen in Impfstoffe mit dem gesamten, unschädlich gemachten Erreger. Dazu werden Plasmodien genetisch so verändert, dass sie zwar noch in die Leberzellen eindringen und so das Immunsystem alarmieren und aktivieren, ihren Entwicklungsprozess in der Leber allerdings nicht abschließen können.

Diese Strategie wurde am Universitätsklinikum Heidelberg entwickelt, im Tierversuch erprobt und 2004 und 2005 veröffentlicht. Das Team um Dr. Kai Matuschewski, heute Professor an der Humboldt Universität in Berlin, zerstörte damals erstmals gezielt ein Schlüsselgen im Plasmodiengenom, das für das Wachstum des Parasiten in der Leberzelle essentiell ist.

Seither feilten Wissenschaftler weltweit weiter an dieser Methode. Sie stellten gentechnisch veränderte Parasiten her, denen bis zu drei verschiedene Gene fehlten, um einen ausreichend sicheren Impfstoff zu erhalten. Doch immer gelingt es einzelnen Parasiten, Malaria auszulösen.

Mirko Singer und seine Kollegen der Abteilung Parasitologie am Zentrum für Infektiologie des Universitätsklinikums Heidelberg gingen daher noch einen Schritt weiter: Mit Hilfe eines gezielt eingesetzten, DNS-schneidenden Proteins trennte er einen ganzen Abschnitt des Genoms mit rund 200 Genen von der restlichen Erbinformation ab. Dazu ergänzte er das Erbgut der Erreger um den genetischen Bauplan für das benötigte Schneideprotein, eine sogenannte Zinkfinger-Nuklease.

Rufen die Parasiten bei ihrem Eintritt in die Leberzellen bestimmte Informationen ihres Erbguts ab, die sie für ihre weitere Entwicklung benötigen, aktivieren sie automatisch auch die Nuklease, die das Genom zerteilt. Die dabei entstehenden nahezu glatten Schnittkanten hätten eigentlich irreparabel sein sollen, der Parasit schaffte es zur Überraschung der Forscher in wenigen Fällen aber trotzdem. Die Heidelberger Forscher konnten den dazu benutzten Mechanismus identifizieren. „Wir haben gezeigt, dass Zinkfinger-Nukleasen in Plasmodium sehr gut und zuverlässig funktionieren. Die nächste Herausforderung besteht nun darin, den Reparaturmechanismus mit mehrfachen Schnitten komplett zu überfordern“, so der Ersautor Singer.

Literatur:
Zinc finger nuclease-based double-strand breaks attenuate malaria parasites and reveal rare microhomology-mediated end joining. Singer Mirko, Marshall Jennifer, Heiss Kirsten, Mair Gunnar, Grimm Dirk, Mueller Ann-Kristin, Frischknecht Friedrich.

Genome Biology.2015, 16:249. DOI: 10.1186/s13059-015-0811-1. URL: http://www.genomebiology.com/2015/16/1/249

Kontakt:
Prof. Dr. Friedrich Frischknecht
Abteilung Parasitologie
Zentrum für Infektionskrankheiten
Universitätsklinikum Heidelberg
Tel: 06221 56-6537
E-Mail: freddy.frischknecht@med.uni-heidelberg.de

Universitätsklinikum und Medizinische Fakultät Heidelberg
Krankenversorgung, Forschung und Lehre von internationalem Rang

Das Universitätsklinikum Heidelberg ist eines der bedeutendsten medizinischen Zentren in Deutschland; die Medizinische Fakultät der Universität Heidelberg zählt zu den international renommierten biomedizinischen Forschungseinrichtungen in Europa. Gemeinsames Ziel ist die Entwicklung innovativer Diagnostik und Therapien sowie ihre rasche Umsetzung für den Patienten. Klinikum und Fakultät beschäftigen rund 12.600 Mitarbeiterinnen und Mitarbeiter und engagieren sich in Ausbildung und Qualifizierung. In mehr als 50 klinischen Fachabteilungen mit ca. 1.900 Betten werden jährlich rund 66.000 Patienten voll- bzw. teilstationär und mehr als 1.000.000 mal Patienten ambulant behandelt. Das Heidelberger Curriculum Medicinale (HeiCuMed) steht an der Spitze der medizinischen Ausbildungsgänge in Deutschland. Derzeit studieren ca. 3.500 angehende Ärztinnen und Ärzte in Heidelberg. www.klinikum.uni-heidelberg.de

Weitere Informationen:

http://Weitere Informationen zur Forschungsgruppe http://www.klinikum.uni-heidelberg.de/Malaria-3-Frischknecht.100117.0.html, Zentrum für Infektiologie http://www.klinikum.uni-heidelberg.de/UEberblick.1208.0.html

Julia Bird | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Eine Karte der Zellkraftwerke
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung
18.08.2017 | Deutsches Zentrum für Infektionsforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie