Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gewebespezifische Stoffwechseluntersuchungen am Fadenwurm

22.12.2011
Der Fadenwurm C. elegans kann als Modellorganismus zum Studium menschlicher Krankheiten, so etwa Muskelkrankheiten, herangezogen werden. Forschende der Universität Basel haben kürzlich Methoden publiziert, worin dem Wurm bei der Charakterisierung pathologischer Stoffwechselveränderungen eine zentrale Rolle zukommt. Die Anwendung der neuen Methode erlaubt einen vertieften Einblick in den zellulären Stoffwechsel, der bei vielen Erkrankungen des Menschen gestört ist.

Der Fadenwurm Caenorhabditis elegans ist bei Genetikern, Zell- und Entwicklungsbiologen ein bewährter Modellorganismus, an dem sich grundsätzliche Fragen der Organentwicklung oder die Auswirkungen von Gendefekten studieren lassen. Vermehrt dient der Wurm heute auch als Modell zum Studium von Störungen des Energiestoffwechsels.


Unterschiedliche Aktivität der mitochondrialen Atmungskette in verschiedenen Geweben des Wurms C. elegans.

Die Abteilung Neuropathologie am Institut für Pathologie des Universitätsspitals Basel unter der Leitung von Prof. Dr. Stephan Frank beschreibt in der Dezemberausgabe von PLoS ONE nun eine Reihe von Methoden, mit welchen sich in C. elegans Erscheinungsbilder menschlicher Krankheiten studieren lassen. Den Forschenden ist gelungen, im Modellwurm – trotz seiner geringen Grösse – Stoffwechseländerungen gewebespezifisch zu erfassen. Die Arbeit entstand im Rahmen einer Zusammenarbeit mit dem «Cologne Cluster of Excellence in Cellular Stress Responses in Aging-associated Diseases» der Universität Köln.

Metabolischer Fingerabdruck sichtbar gemacht
Der in den 1970er Jahren als genetischer Modellorganismus eingeführte Fadenwurm C. elegans erlaubt die Beobachtung aller seiner Zellen in vivo während seines gesamten Lebenszyklus. Ähnlich wie die Fruchtfliege Drosophila verfügt C. elegans über ideale Modelleigenschaften, wie kurze Generationszeit und wenig Platzbedarf. Was bei der Beobachtung seiner Zellen und bei der Genetik ein Vorteil ist, erweist sich aber bei biochemischen Untersuchungen als Nachteil: Der Wurm ist mit 1 Millimeter Körperlänge und 0,1 Millimeter Durchmesser äusserst klein. Des Weiteren ist aufgrund der harten äusseren Wurmhaut eine mechanische Trennung verschiedener Gewebe mit ihren spezifischen Stoffwechselaktivitäten nicht praktikabel. Zudem stellt diese Aussenhaut ein unüberwindbares Hindernis für die Anwendung der meisten histochemischen Reaktionen dar.

Einige Probleme haben die Forschenden nun auf eine relativ elegante Weise umgangen: Anstatt die Würmer zu einem Gewebegemisch zu homogenisieren, führen sie die biochemischen Nachweisreaktionen direkt am Gefrierschnitt durch. Durch das Schneiden gefrorener Würmer werden die Zellen bzw. Organellen unterschiedlichsten Nachweisreaktionen zugänglich gemacht. Mittels Färbereaktionen lassen sich gewebespezifische metabolische Profile erstellen. Im Gegensatz zu der bislang angewandten biochemischen Untersuchung, erlaubt die neue Methode ein Arbeiten mit weit geringeren Wurmmengen – viele Mutanten mit Stoffwechseldefekten lassen sich nur schwer anzüchten – und liefert dabei eindeutige Aussagen zur metabolischen Aktivität auf Gewebeebene. Als Beispiel sei die Messung des Fettgehalts erwähnt, die bis anhin fehlerbehaftet war und kontrovers diskutierte Resultate lieferte. Die neue Methode erlaubt nun eine wesentlich genauere Abschätzung des Fettgehalts in den verschiedenen Wurmgeweben.

Wurmmutanten simulieren menschliches Leiden
Im Rahmen der Methodenentwicklung haben die Forschenden bei der Untersuchung sogenannter mitochondrialer Wurmmutanten bislang nicht beschriebene, morphologische Veränderungen festgestellt. Interessanterweise fanden sich auch Gemeinsamkeiten zwischen mitochondrialen Muskelerkrankungen beim Menschen und den entsprechend modellhaft erkrankten Würmern. Die Methodik wird derzeit am Biozentrum sowohl bei der Untersuchung intrazellulärer Substanztransportmechanismen als auch in einem Demenz-Forschungsprojekt der Abteilung für Neuropathologie angewandt. Dies sind zwei weitere Forschungsgebiete, welche die Vorteile von C. elegans als Modellorganismus zu nutzen wissen.
Originalbeitrag
Jürgen Hench, Ivana Brati? Hench, Claire Pujol, Sabine Ipsen, Susanne Brodesser, Arnaud Mourier, Markus Tolnay, Stephan Frank, Aleksandra Trifunovi?
A Tissue-Specific Approach to the Analysis of Metabolic Changes in Caenorhabditis elegans

PLoS ONE. 2011;6(12):e28417 | doi: 10.1371/journal.pone.0028417

Reto Caluori | Universität Basel
Weitere Informationen:
http://www.unibas.ch
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0028417

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie